Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A Fefferman-Poincaré type inequality for Carnot-Carathéodory vector fields


Authors: Giuseppe Di Fazio and Pietro Zamboni
Journal: Proc. Amer. Math. Soc. 130 (2002), 2655-2660
MSC (2000): Primary 46E35; Secondary 35B60
DOI: https://doi.org/10.1090/S0002-9939-02-06394-3
Published electronically: February 4, 2002
MathSciNet review: 1900873
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we prove a Fefferman-Poincaré type inequality in spaces with metric induced by Carnot-Carathéodory vector fields.


References [Enhancements On Off] (What's this?)

  • [1] M. Aizenman and B. Simon, Brownian motion and Harnack inequality for Schrödinger operators, Comm. Pure Appl. Math. 35 (1982), 209-273. MR 84a:35062
  • [2] F. Chiarenza, E. Fabes and N. Garofalo, Harnack's inequality for Schrödinger operators and continuity of solutions, Proc. A.M.S. 98 (1986), 415-425. MR 88a:35037
  • [3] F. Chiarenza and M. Frasca, A remark on a paper by C. Fefferman, Proc. Amer. Math. Soc. 108 (1990), 407-409. MR 91a:46030
  • [4] D. Danielli, A Fefferman - Phong inequality and applications to quasilinear subelliptic equations, Potential Analysis 11 (1999), 387-413. MR 2000j:35044
  • [5] D. Danielli, N.Garofalo and D.Nhieu, Trace inequalities for Carnot-Caratheodory spaces and applications, Ann. Scuola Norm. Sup. Pisa XXVII (1998), 195-252. MR 2000d:46039
  • [6] C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206. MR 85f:35001
  • [7] G. Lu and R. Wheeden, An optimal representation formula for Carnot-Carathéodory vector fields, Bull. London Math. Soc. 30 (1998), 578-584. MR 2000a:31005
  • [8] M. Schechter, Spectra of partial differential operators, North Holland (1986). MR 88h:35085
  • [9] C. Simader, An elementary proof of Harnack's inequality for Schrödinger operators and related topics, Math. Z 203 (1990), 129-152. MR 91m:35071
  • [10] P. Zamboni, Some function spaces and elliptic partial differential equations, Le Matematiche 42 (1987), 171-178. MR 90k:46080
  • [11] P. Zamboni, Unique continuation for non negative solutions of quasilinear elliptic equations, Bull. of Australian Math. Soc. 64 (2001), 149-156. CMP 2001:16

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46E35, 35B60

Retrieve articles in all journals with MSC (2000): 46E35, 35B60


Additional Information

Giuseppe Di Fazio
Affiliation: Università di Catania, Dipartimento di Matematica, viale Andrea Doria 6, 95125 Catania, Italy
Email: difazio@dmi.unict.it

Pietro Zamboni
Affiliation: Università di Catania, Dipartimento di Matematica, viale Andrea Doria 6, 95125 Catania, Italy
Email: zamboni@dmi.unict.it

DOI: https://doi.org/10.1090/S0002-9939-02-06394-3
Keywords: Fefferman-Poincar\'{e} inequality, Carnot-Carath\'{e}odory vector fields, Stummel-Kato class
Received by editor(s): July 21, 2000
Received by editor(s) in revised form: April 6, 2001
Published electronically: February 4, 2002
Dedicated: Dedicated to Professor Michele Frasca on the occasion of his sixtieth birthday
Communicated by: Christopher D. Sogge
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society