PARABOLIC SUBGROUPS OF VERSHIK-KEROV’S GROUP

WALDEMAR HOLUBOWSKI

(Communicated by Stephen D. Smith)

Dedicated to Z. I. Borevich (1922-1995)

Abstract. In this note we show that all parabolic subgroups of Vershik-Kerov’s group GLB(R) (i.e. subgroups containing T(∞, R)—the group of infinite dimensional upper triangular matrices) are net subgroups for a wide class of semilocal rings R.

1. Introduction

The classical result for finite dimensional general linear group over a field states that all “parabolic” subgroups, that is, containing the group of all upper triangular matrices, are “staircase groups” (see [1], p. 53, or [3] for more general result in the context of groups with BN−pair).

In [2] Borevich introduced a concept of a net of ideals σ and a net subgroup G(σ) (see definitions in the next section). Theorem 1 of [2] gives the following generalization:

Theorem 1.1. Let R be a semilocal ring, in which 1 is a sum of two invertible elements. If H is a parabolic subgroup of GLn(R), then there exists a unique T−net σ = (σij) of two-sided ideals of R, such that H = G(σ).

In our paper we extend this result to one infinite dimensional linear group. For R an associative ring with 1 by GL(∞, R) we denote the group of all column-finite invertible infinite matrices over R (indexed by positive integers N). Let T(∞, R) denote a group of all infinite upper triangular matrices over R (with invertible elements on the main diagonal). We define GLB(R) as a subgroup of GL(∞, R) of all matrices which have a finite number of nonzero entries below the main diagonal (clearly, T(∞, R) < GLB(R) < GL(∞, R)). This group was considered in the case of finite field k by Vershik and Kerov [6] and has applications in representation theory. GLB(k) is infinite dimensional, locally compact, totally disconnected, and amenable in topological sense and unimodular group. The stable general linear group GL∞(k), i.e. direct limit of GLn(k) under natural embeddings g → diag(g, 1), is its dense subgroup and the quotient group of GLB(k) over the center is topologically simple.

In this paper we give a purely algebraic description of parabolic subgroups of GLB(R) (i.e. containing T(∞, R)). Our main result is the following theorem.

Received by the editors March 22, 2001 and, in revised form, May 10, 2001.

2000 Mathematics Subject Classification. Primary 20H25, 20E15.

Key words and phrases. Parabolic subgroup, net subgroup.

©2002 American Mathematical Society

2579
Theorem 1.2. Let R be a semilocal ring, in which 1 is a sum of two invertible elements. If H is a parabolic subgroup of $GL(R)$, then there exists a unique T–net $\sigma = (\sigma_{ij})$ of two-sided ideals of R, such that $H = G(\sigma)$.

Using this theorem we can prove the “standard properties” (see [3], §2) of parabolic subgroups in $GL(R)$.

Theorem 1.3. If R is a semilocal ring, in which 1 is a sum of two invertible elements, then:

(i) If P_1, P_2 are two parabolic subgroups of $GL(R)$ and $gP_1g^{-1} \subset P_2$ for some $g \in GL(R)$, then $g \in P_2$ and $P_1 \subset P_2$.

(ii) Two different parabolic subgroups of $GL(R)$ are not conjugate.

(iii) Every parabolic subgroup of $GL(R)$ is self-normalized.

Let $S_{\text{fin}}(\mathbb{N})$ denote the regular matrix representation of all permutations of positive integers \mathbb{N} with finite support. We have

Theorem 1.4 (Bruhat Decomposition Theorem). For any field K,

$$GLB(K) = T(\infty, K) \cdot S_{\text{fin}}(\mathbb{N}) \cdot T(\infty, K).$$

If $K = \mathbb{C}$ (complex numbers), then Theorem 1.4 follows from [6]. In [6] the Hecke algebra of double cosets of $GLB(\mathbb{C})$ over the Borel subgroup $B = T(\infty, \mathbb{C})$ was introduced, and because this Hecke algebra is isomorphic to the group algebra $\mathbb{C}(S_{\text{fin}}(\mathbb{N}))$, we obtain the Bruhat decomposition.

2. PROOFS OF MAIN RESULTS

By e_i (e_n) we denote the unit matrix in $GL(\infty, R)$ ($GL_n(R)$) and by e_{ij} a matrix with the only nontrivial element 1 in the i–th row and j–th column. We denote $t_{ij}(\zeta) = e + \zeta e_{ij}, \zeta \in R$, $i, j \in \mathbb{N}$, $d_i(\theta) = e + (\theta - 1)e_{ii}$, θ–invertible, and $[x, y] = xyx^{-1}y^{-1}$.

Definition 2.1. A system $\sigma = (\sigma_{ij})$ ($i, j \in \mathbb{N}$) of two sided ideals σ_{ij} of R is called a net if

$$(\ast) \quad \sigma_{ir} \cdot \sigma_{rj} \subset \sigma_{ij} \quad \text{for all} \quad i, j, r \in \mathbb{N}.$$

We call σ a T–net if $\sigma_{ij} = R$ for $i \leq j$. If the set of indexes is $I = \{1, 2, \ldots, n\}$ we have the finite nets of ideals in $GL_n(R)$.

Let the set $M(\sigma)$ consist of all matrices a, such that $a_{ij} \in \sigma_{ij}$. If σ satisfies (\ast), then $e + M(\sigma) = \{e + a : a \in M(\sigma)\}$ is closed under multiplication of matrices and by $G(\sigma)$ we denote its maximal subgroup. Let $G(m, \infty)$ denote the subgroup of $GL(\infty, R)$ of all matrices a for which $a_{ij} = 0$ for $i > \max\{j, m\}$. It is clear that $GL(R)$ is a direct limit of $G(m, \infty)$ under natural embeddings.

Proof of Theorem 1.2. For $H, T(\infty, R) < H < GLB(R)$, we define T–nets σ and $\sigma(m)$ as follows:

$$\sigma_{ij} = \begin{cases} \{\zeta \in R : t_{ij}(\zeta) \in H\} & \text{for} \ i > j, \\ R & \text{for} \ i \leq j, \end{cases}$$

and

$$\sigma(m)_{ij} = \begin{cases} 0 & \text{if} \ i > \max\{m, j\}, \\ \sigma_{ij} & \text{otherwise}. \end{cases}$$
We put $H(m) = H \cap G(m, \infty)$. It is clear that H is a direct limit of $H(m)$ and $G(\sigma)$ is a direct limit of $G(\sigma(m))$. We now show that $H(m) = G(\sigma(m))$. If $g \in H(m)$, then $g = \begin{pmatrix} g_1 & g_2 \\ 0 & g_2 \end{pmatrix}$ where $g_1 \in GL_{m}(R)$, $g_2 \in T(\infty, R)$. Since $H(m) \supset T(\infty, R)$, multiplying $g \in H(m)$ by matrices $\begin{pmatrix} e_m & 0 \\ 0 & g_2^{-1} \end{pmatrix}$ and $\begin{pmatrix} e_m & 0 \\ 0 & g_1 \end{pmatrix}$, we see that $g' = \begin{pmatrix} g_1 & 0 \\ 0 & g_2 \end{pmatrix} \in H$. We denote by $\tilde{H}(m)$ the subgroup of $GL_{m}(R)$ generated by all such g_1. From Theorem 1.1 it follows that there exists a unique finite T-net $\tilde{\sigma}(m)$ of ideals of R such that $\tilde{H}(m) = G(\tilde{\sigma}(m))$. From the construction of $\tilde{\sigma}(m)$ and $\sigma(m)$ we deduce the equality $H(m) = G(\sigma(m))$ which implies $H = G(\sigma)$.

Proof of Theorem 1.3. We now prove (i). Then (ii) and (iii) follow easily from (i). If $g \cdot G(\sigma) \cdot g^{-1} \subset G(\sigma')$, then for some m we have $g \in G(m, \infty)$. So

$$\left(\begin{pmatrix} g_1 & 0 \\ 0 & e \end{pmatrix} \right) \cdot G(\sigma) \cdot \left(\begin{pmatrix} g_1^{-1} & 0 \\ 0 & e \end{pmatrix} \right) \subset G(\sigma')$$

or equivalently $g_1 \cdot G(\tilde{\sigma}(m)) \cdot g_1^{-1} \subset G(\tilde{\sigma}'(m))$ in the group $GL_{m}(R)$. We show that $g_1 \in G(\tilde{\sigma}'(m))$ which implies $g \in G(\sigma'(m))$. From decomposition $g_1 = uvdw$ where u, w are upper unitriangular, d is diagonal and v is lower unitriangular ([2], Thm. 1) it suffices to show that $v \in G(\sigma'(m))$. We have $v = v_2 \cdot \ldots \cdot v_m$, where $v_i = \prod_{j=1}^{i-1} t_{ij}(v_{ij})$. We proceed by induction. Assume that for some r, $2 \leq r \leq m$, we proved that $v_k \in G(\sigma'(m))$, $2 \leq k \leq r$. Thus $b \cdot G(\sigma(m)) \cdot b^{-1} \subset G(\sigma'(m))$, where $b = v_r \cdot \ldots \cdot v_m$. We have $c = [d_0(\theta)^{-1}, b] \in G(\sigma')$ and hence $c_{rs} = v_{rs}(\theta - 1) \in \sigma'_{rs}$. This implies $v_{rs} \in \sigma'_{rs}$ and $v_r \in G(\sigma')$.

Proof of Theorem 1.4. From [1], p. 45, for any field K we have $GL_{m}(K) = T_{m}(K) \cdot S_{m} \cdot T_{m}(K)$, where S_{m} is a regular matrix representation of symmetric group on m elements. It means that $G(m, \infty) = T(\infty, K) \cdot S_{m} \cdot T(\infty, K)$ and since $S_{\text{fin}}(\mathbb{N})$ is direct limit of S_{m} under natural embeddings Theorem 1.4 follows.

3. Remarks

a) In a semilocal ring R the unit element 1 is a sum of two invertible elements if and only if every summand in the decomposition of a factor ring of R over a Jacobson radical is different from two elements field ([2], Thm. 3).

b) As was claimed in [3] it is possible to extend Theorem 1.1 to rings R such that R is additively generated by all invertible elements and 1 is a sum of two invertible elements. It means that our results are also valid in this case.

c) Under the same assumption on R as in the remark above, in [4] there is description of subgroups of $T(\infty, R)$ containing $D_{\text{fin}}(\infty, R)$ — the subgroup of finitary diagonal matrices. This result together with Theorem 1.2 give a description of two important intervals in the lattice of subgroups of $GL_{B}(R)$.

References

Institute of Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland

E-mail address: wholub@polsl.gliwice.pl