Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the number of Fourier coefficients that determine a Hilbert modular form


Authors: Srinath Baba, Kalyan Chakraborty and Yiannis N. Petridis
Journal: Proc. Amer. Math. Soc. 130 (2002), 2497-2502
MSC (2000): Primary 11F41; Secondary 11F30
DOI: https://doi.org/10.1090/S0002-9939-02-06609-1
Published electronically: April 17, 2002
MathSciNet review: 1900854
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We estimate the number of Fourier coefficients that determine a Hilbert modular cusp form of arbitrary weight and level. The method is spectral (Rayleigh quotient) and avoids the use of the maximum principle.


References [Enhancements On Off] (What's this?)

  • 1. Freitag, E.: Hilbert Modular Forms. Springer Verlag, New York, Berlin, Heidelberg, 1990. MR 91c:11025
  • 2. Goldfeld, D.; Hoffstein, J.: On the number of Fourier coefficients that determine a modular form. A tribute to Emil Grosswald: number theory and related analysis, 385-393, Contemp. Math., 143, Amer. Math. Soc., Providence, RI, 1993. MR 94b:11037
  • 3. Huntley, J.: Spectral multiplicity on products of hyperbolic spaces. Proc. Amer. Math. Soc. 111 (1991), no. 1, 1-12. MR 91d:11055
  • 4. Jacquet, H.; Piatetskii-Shapiro, I. I.; Shalika, J. A.: Rankin-Selberg convolutions. Amer. J. Math. 105 (1983), no. 2, 367-464. MR 85g:11044
  • 5. Moreno, C. J.: Analytic proof of the strong multiplicity one theorem. Amer. J. Math. 107 (1985), no. 1, 163-206. MR 86m:22027
  • 6. Murty, M. R.: Congruences between modular forms. Analytic number theory (Kyoto, 1996), 309-320, London Math. Soc. Lecture Note Ser., 247, Cambridge Univ. Press, Cambridge, 1997. MR 2000c:11073
  • 7. Roelcke, W.: Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. I, II. Math. Ann. 167 (1966), 292-337; ibid. 168 (1966) 261-324. MR 39:4386
  • 8. Piatetskii-Shapiro, I. I.: Estimate of the dimensionality of the space of automorphous forms for certain types of discrete groups. (Russian) Dokl. Akad. Nauk SSSR (N.S.) 113 (1957) 980-983.
  • 9. Shimizu, H.: On discontinuous groups operating on the product of the upper half planes. Ann. of Math. (2) 77 (1963) 33-71. MR 26:2641
  • 10. Shimura, G.: Introduction to the arithmetic theory of automorphic function, Princeton University Press, Princeton, N.J., 1971. MR 47:3318

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11F41, 11F30

Retrieve articles in all journals with MSC (2000): 11F41, 11F30


Additional Information

Srinath Baba
Affiliation: Department of Mathematics and Statistics, McGill University, Montreal, Quebec, Canada H3A 2K6
Email: sbaba@math.mcgill.ca

Kalyan Chakraborty
Affiliation: School of Mathematics, Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad, 211019, India
Email: kalyan@mri.ernet.in

Yiannis N. Petridis
Affiliation: Department of Mathematics and Statistics, McGill University, Montreal, Quebec, Canada H3A 2K6
Email: petridis@math.mcgill.ca

DOI: https://doi.org/10.1090/S0002-9939-02-06609-1
Keywords: Hilbert modular forms, Fourier coefficients
Received by editor(s): February 27, 2001
Published electronically: April 17, 2002
Communicated by: Dennis A. Hejhal
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society