Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On locally finite $p$-groups satisfying an Engel condition


Authors: Alireza Abdollahi and Gunnar Traustason
Journal: Proc. Amer. Math. Soc. 130 (2002), 2827-2836
MSC (2000): Primary 20F45, 20F50
DOI: https://doi.org/10.1090/S0002-9939-02-06421-3
Published electronically: March 12, 2002
MathSciNet review: 1908264
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a given positive integer $n$ and a given prime number $p$, let $r=r(n,p)$ be the integer satisfying $p^{r-1}<n\leq p^{r}$. We show that every locally finite $p$-group, satisfying the $n$-Engel identity, is (nilpotent of $n$-bounded class)-by-(finite exponent) where the best upper bound for the exponent is either $p^{r}$ or $p^{r-1}$ if $p$ is odd. When $p=2$ the best upper bound is $p^{r-1},p^{r}$ or $p^{r+1}$. In the second part of the paper we focus our attention on $4$-Engel groups. With the aid of the results of the first part we show that every $4$-Engel $3$-group is soluble and the derived length is bounded by some constant.


References [Enhancements On Off] (What's this?)

  • 1. S. Bachmuth, Exceptional primes in varieties, in ``Conference on Group Theory (Univ. Wisconsin-Parkside 1972)'', Lecture Notes in Math. 319, Springer-Verlag (1973), 19-25. MR 51:8253
  • 2. S. Bachmuth and H. Y. Mochizuki, Third Engel groups and the Macdonald-Neumann conjecture, Bull. Austral. Math. Soc. 5 (1971), 379-386. MR 46:1917
  • 3. A. J. Bayes, J. Kautsky and J. W. Wamsley, Computation in nilpotent groups (application), in ``Proceedings of the Second International Conference on the Theory of Groups (Australian Nat. Univ. Canberra 1973)'', Lecture Notes in Math., Vol. 372, Springer-Verlag (1974), 82-89. MR 50:7299
  • 4. R. G. Burns, O. Macedonska and Y. Medvedev, Groups satisfying semigroup laws, and nilpotent-by-Burnside varieties, J. Algebra 195 (1997), 510-525. MR 98h:20039
  • 5. R. G. Burns and Y. Medvedev, A note on Engel groups and local nilpotence, J. Austral. Math. Soc. (Series A) 64 (1998), 92-100. MR 98k:20063
  • 6. J. D. Dixon, M. P. F. du Sautoy, A. Mann and D. Segal, Analytic pro-$p$ Groups. London Mathematical Society Lecture Note Series, 157, Cambridge University Press (1991). MR 2000m:20039
  • 7. G. Endimioni, Sur la résolubilité des $2$-groupes, C. R. Acad. Sci. Paris (Série I), 316 (1993), 1253-1255. MR 94g:20029
  • 8. G. Endimioni, Groups in which every $d$-generator subgroup is nilpotent of bounded class, Quart. J. Math. Oxford (2) 46 (1995), 433-435. MR 97e:20037
  • 9. M. I. Golovanov, On the degree of nilpotency of $4$-Engel Lie rings, Algebra i Logika 25 (1986), 508-532. MR 89b:17018
  • 10. N. D. Gupta, Third-Engel $2$-groups are soluble, Can. Math. Bull. 15 (1972), 523-524. MR 47:351
  • 11. N. D. Gupta and M. F. Newman, The nilpotency class of finitely generated groups of exponent $4$, Lecture Notes in Mathematics 372, Springer-Verlag (1974), 330-332. MR 50:4752
  • 12. N. D. Gupta and M. F. Newman, Third Engel groups, Bull. Austral. Math. Soc. 40 (1989), 215-230. MR 91b:20036
  • 13. H. Heineken, Engelsche Elemente der Länge drei, Illionis J. Math. 5 (1961), 681-707. MR 24:A1319
  • 14. P. J. Higgins, Lie rings satisfying the Engel condition, Proc. Camb. Phil. Soc. 50 (1954), 8-15. MR 15:596b
  • 15. L. C. Kappe and W. P. Kappe, On three-Engel groups, Bull. Austral. Math. Soc. 7 (1972), 391-405. MR 47:3550
  • 16. F. W. Levi, Groups in which the commutator operation satisfies certain algebraic conditions, J. Indian Math. Soc. 6 (1942), 87-97. MR 4:133i
  • 17. A. Lubotzky and A. Mann, Powerful $p$-groups. I. Finite groups, J. Algebra 105 (1987), 484-505. MR 88f:20045
  • 18. Ju. P. Razmyslov, The Hall-Higman problem, Izv. Akad. Nauk SSSR Ser. Math 42 (1978), 833-847. MR 80d:20040
  • 19. D. J. S. Robinson, A course in the theory of groups, (Springer-Verlag, New York, 1982). MR 84k:20001
  • 20. A. Shalev, Characterization of $p$-adic analytic groups in terms of wreath products, J. Algebra 145 (1992), 204-208. MR 92i:20029
  • 21. G. Traustason, Engel Lie-algebras, Quart. J. Math. Oxford (2) 44 (1993), 355-384. MR 95a:17015
  • 22. G. Traustason, On $4$-Engel groups, J. Algebra 178 (1995), 414-429. MR 96i:20049
  • 23. Unsolved problems in group theory. The Kourovka notebook (13th edition). Edited by V.D. Mazurov and E.I. Khukhro (Novosibirsk, 1995). MR 97d:20001
  • 24. M. Vaughan-Lee, Engel-$4$ groups of exponent $5$, Proc. London Math. Soc. (3) 74 (1997), 306-334. MR 98a:20036
  • 25. J. S. Wilson, Two-generator conditions for residually finite groups, Bull. London Math. Soc. 23 (1991), 239-248. MR 92k:20068
  • 26. E. I. Zel'manov, Engel Lie-algebras, Dokl. Akad. Nauk SSSR 292 (1987), 265-268. MR 88d:17009
  • 27. E. I. Zel'manov, Some problems in the theory of groups and Lie algebras, Math. Sb. 180 (1989), 159-167. MR 90f:17024
  • 28. E. I. Zel'manov, The solution of the restricted Burnside problem for groups of odd exponent, Math. USSR Izvestia 36 (1991), 41-60. MR 91i:20037
  • 29. E. I. Zel'manov, The solution of the restricted Burnside problem for 2-groups, Mat. Sb. 182 (1991), 568-592. MR 93a:20063

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 20F45, 20F50

Retrieve articles in all journals with MSC (2000): 20F45, 20F50


Additional Information

Alireza Abdollahi
Affiliation: Department of Mathematics, University of Isfahan, Isfahan 81744, Iran
Email: alireza_abdollahi@yahoo.com

Gunnar Traustason
Affiliation: C.M.I.-Université de Provence, UMR-CNRS 6632, 39, rue F. Joliot-Curie, 13453 Marseille Cedex 13, France
Address at time of publication: Department of Mathematics, Lund Institute of Technology, P.O. Box 118, S-22100 Lund, Sweden
Email: gunnar@gyptis.univ-mrs.fr, gt@maths.lth.se

DOI: https://doi.org/10.1090/S0002-9939-02-06421-3
Keywords: Locally finite $p$-groups, Engel groups
Received by editor(s): March 26, 2001
Received by editor(s) in revised form: May 12, 2001
Published electronically: March 12, 2002
Additional Notes: The second author thanks the European Community for their support with a Marie Curie grant.
Communicated by: Stephen D. Smith
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society