Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Admissible vectors for the regular representation


Author: Hartmut Führ
Journal: Proc. Amer. Math. Soc. 130 (2002), 2959-2970
MSC (2000): Primary 43A30; Secondary 42C40
Published electronically: March 12, 2002
MathSciNet review: 1908919
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is well known that for irreducible, square-integrable representations of a locally compact group, there exist so-called admissible vectors which allow the construction of generalized continuous wavelet transforms. In this paper we discuss when the irreducibility requirement can be dropped, using a connection between generalized wavelet transforms and Plancherel theory. For unimodular groups with type I regular representation, the existence of admissible vectors is equivalent to a finite measure condition. The main result of this paper states that this restriction disappears in the nonunimodular case: Given a nondiscrete, second countable group $G$ with type I regular representation $\lambda_G$, we show that $\lambda_G$ itself (and hence every subrepresentation thereof) has an admissible vector in the sense of wavelet theory iff $G$ is nonunimodular.


References [Enhancements On Off] (What's this?)

  • 1. S. T. Ali, J-P. Antoine and J-P. Gazeau, Coherent States, Wavelets and Their Generalizations, Springer-Verlag, New York, 2000. CMP 2000:07
  • 2. S.T. Ali, H. Führ and A. Krasowska, Plancherel inversion as unified approach to wavelet transforms and Wigner functions, submitted.
  • 3. D. Arnal and J. Ludwig, Q.U.P. and Paley-Wiener property of unimodular, especially nilpotent, Lie groups, Proc. Amer. Math. Soc. 125 (1997), 1071-1080. MR 97f:43004
  • 4. D. Bernier and K. Taylor, Wavelets from square-integrable representations, SIAM J. Math. Anal. 27 (1996), 594-608. MR 97h:22004
  • 5. G. Bohnke, Treillis d'ondelettes aux groupes de Lorentz, Annales de l'Institut Henri Poincaré 54 (1991), 245-259. MR 93c:22020
  • 6. A.L. Carey, ``Group representations in reproducing kernel Hilberts spaces,'' Reports in Math. Phys. 14 (1978), 247-259. MR 81f:22006
  • 7. J. Dixmier, $C^{\ast}$-Algebras, North Holland, Amsterdam, 1977. MR 56:16388
  • 8. M. Duflo and C.C. Moore, On the regular representation of a nonunimodular locally compact group, J. Funct. Anal. 21 (1976), 209-243. MR 52:14145
  • 9. G.B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, Boca Raton, 1995. MR 98c:43001
  • 10. H. Führ, Wavelet frames and admissibility in higher dimensions, J. Math. Phys. 37 (1996), 6353-6366. MR 97h:42014
  • 11. H. Führ and M. Mayer: Continuous wavelet transforms from semidirect products: Cyclic representations and Plancherel measure. J. Fourier Anal. Appl., to appear.
  • 12. A. Grossmann, J. Morlet and T. Paul, Transforms associated to square integrable group representations I: General Results, J. Math. Phys. 26 (1985), 2473-2479. MR 86k:22013
  • 13. C.J. Isham and J.R. Klauder, Coherent states for $n$-dimensional Euclidean groups $E(n)$ and their application, J. Math. Phys. 32 (1991), 607-620. MR 92g:81074
  • 14. Q. Jiang, Wavelet transform and orthogonal decomposition of ${L}^2$ space on the Cartan domain $BDI(q=2)$, Trans. Am. Math. Soc. 349 (1997), 2049-2068. MR 97h:22005
  • 15. J.R. Klauder and R.F. Streater, A wavelet transform for the Poincaré group, J. Math. Phys. 32 (1991), 1609-1611. MR 92g:81075
  • 16. R.S. Laugesen, N. Weaver, G. Weiss and E.N. Wilson, Continuous wavelets associated with a general class of admissible groups and their characterization. J. Geom. Anal., to appear.
  • 17. R.L. Lipsman: Non-abelian Fourier analysis. Bull. Sci. Math. 98 (1974), 209-233. MR 54:13467
  • 18. G. Mackey, Borel structure in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134-165. MR 19:752b
  • 19. R. Murenzi, Ondelettes multidimensionelles et application à l'analyse d'images, Thèse, Université Catholique de Louvain, Louvain-La-Neuve, 1990.
  • 20. N. Tatsuuma, Plancherel formula for non-unimodular locally compact groups, J. Math. Kyoto Univ. 12 (1972), 179-261. MR 45:8777

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 43A30, 42C40

Retrieve articles in all journals with MSC (2000): 43A30, 42C40


Additional Information

Hartmut Führ
Affiliation: Zentrum Mathematik, TU München, D-80290 München, Germany
Address at time of publication: Institut für Biomathematik und Biometrie, GSF-Forschungszentrum für Umwelt und Gesundheit, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
Email: fuehr@gsf.de

DOI: http://dx.doi.org/10.1090/S0002-9939-02-06433-X
PII: S 0002-9939(02)06433-X
Keywords: Continuous wavelet transforms, coherent states, square-integrable representations, Plancherel theory, cyclic vectors
Received by editor(s): October 26, 2000
Received by editor(s) in revised form: May 3, 2001
Published electronically: March 12, 2002
Communicated by: David R. Larson
Article copyright: © Copyright 2002 American Mathematical Society