A priori estimates for higher order multipliers on a circle

Authors:
A. Alexandrou Himonas and Gerard Misiolek

Journal:
Proc. Amer. Math. Soc. **130** (2002), 3043-3050

MSC (1991):
Primary 42B15; Secondary 35G25

Published electronically:
March 14, 2002

MathSciNet review:
1908929

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We present an elementary proof of an a priori estimate of Bourgain for a general class of multipliers on a circle using an extension of methods developed in our previous work. The main tool is a suitable version of a counting argument of Zygmund for unbounded regions.

**[B1]**J. Bourgain,*Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations*, Geom. Funct. Anal.**3**(1993), no. 2, 107–156. MR**1209299**, 10.1007/BF01896020**[B2]**J. Bourgain,*Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation*, Geom. Funct. Anal.**3**(1993), no. 3, 209–262. MR**1215780**, 10.1007/BF01895688**[B3]**Jean Bourgain,*Nonlinear Schrödinger equations*, Hyperbolic equations and frequency interactions (Park City, UT, 1995), IAS/Park City Math. Ser., vol. 5, Amer. Math. Soc., Providence, RI, 1999, pp. 3–157. MR**1662829****[FG]**Yung-Fu Fang and Manoussos G. Grillakis,*Existence and uniqueness for Boussinesq type equations on a circle*, Comm. Partial Differential Equations**21**(1996), no. 7-8, 1253–1277. MR**1399198**, 10.1080/03605309608821225**[G]**Jean Ginibre,*Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d’espace (d’après Bourgain)*, Astérisque**237**(1996), Exp. No. 796, 4, 163–187 (French, with French summary). Séminaire Bourbaki, Vol. 1994/95. MR**1423623****[GV]**J. Ginibre and G. Velo,*Generalized Strichartz inequalities for the wave equation*, J. Funct. Anal.**133**(1995), no. 1, 50–68. MR**1351643**, 10.1006/jfan.1995.1119**[HM1]**A. Alexandrou Himonas and Gerard Misiołek,*The Cauchy problem for a shallow water type equation*, Comm. Partial Differential Equations**23**(1998), no. 1-2, 123–139. MR**1608504**, 10.1080/03605309808821340**[HM2]**A. A. Himonas and G. Misioek,*A'priori estimates for Schrödinger type multipliers*, to appear in Illinois J. Math.**[KPV1]**Carlos E. Kenig, Gustavo Ponce, and Luis Vega,*Higher-order nonlinear dispersive equations*, Proc. Amer. Math. Soc.**122**(1994), no. 1, 157–166. MR**1195480**, 10.1090/S0002-9939-1994-1195480-8**[KPV2]**Carlos E. Kenig, Gustavo Ponce, and Luis Vega,*Oscillatory integrals and regularity of dispersive equations*, Indiana Univ. Math. J.**40**(1991), no. 1, 33–69. MR**1101221**, 10.1512/iumj.1991.40.40003**[KPV3]**Carlos E. Kenig, Gustavo Ponce, and Luis Vega,*The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices*, Duke Math. J.**71**(1993), no. 1, 1–21. MR**1230283**, 10.1215/S0012-7094-93-07101-3**[P]**Gustavo Ponce,*On nonlinear dispersive equations*, Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998), 1998, pp. 67–76 (electronic). MR**1648141****[ST]**J. C. Saut and N. Tzvetkov,*The Cauchy problem for the fifth order KP equations*, J. Math. Pures Appl. (9)**79**(2000), no. 4, 307–338 (English, with English and French summaries). MR**1753060**, 10.1016/S0021-7824(00)00156-2**[SO]**Christopher D. Sogge,*Lectures on nonlinear wave equations*, Monographs in Analysis, II, International Press, Boston, MA, 1995. MR**1715192****[St]**Elias M. Stein,*Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals*, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR**1232192****[SW]**Elias M. Stein and Guido Weiss,*Introduction to Fourier analysis on Euclidean spaces*, Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32. MR**0304972****[STR]**Robert S. Strichartz,*Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations*, Duke Math. J.**44**(1977), no. 3, 705–714. MR**0512086****[Z]**A. Zygmund,*On Fourier coefficients and transforms of functions of two variables*, Studia Math.**50**(1974), 189–201. MR**0387950**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
42B15,
35G25

Retrieve articles in all journals with MSC (1991): 42B15, 35G25

Additional Information

**A. Alexandrou Himonas**

Affiliation:
Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556

Email:
alex.a.himonas.1@nd.edu

**Gerard Misiolek**

Affiliation:
Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556 – and – Isaac Newton Institute for Mathematical Sciences, University of Cambridge, Cambridge, CB3 9EW, United Kingdom

Email:
misiolek.1@nd.edu

DOI:
https://doi.org/10.1090/S0002-9939-02-06439-0

Keywords:
Fourier transform,
multiplier inequalities,
interpolation

Received by editor(s):
May 29, 2001

Published electronically:
March 14, 2002

Additional Notes:
Both authors were partially supported by the NSF under grant number DMS-9970857 and by the Faculty Research Program of the University of Notre Dame.

The second author was also supported by the Isaac Newton Institute for Mathematical Sciences of the University of Cambridge.

Communicated by:
Mei-Chi Shaw

Article copyright:
© Copyright 2002
American Mathematical Society