Stabilization of evolution equations by noise

Author:
Anna A. Kwiecinska

Journal:
Proc. Amer. Math. Soc. **130** (2002), 3067-3074

MSC (2000):
Primary 35K90, 37L55; Secondary 47D06

Published electronically:
March 29, 2002

MathSciNet review:
1908931

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a deterministic equation of evolution

in a separable, real Hilbert space. We prove that if generates a -semigroup, then this equation can be stabilized, in terms of Lyapunov exponents, by noise.

**1.**Ludwig Arnold,*Stochastic differential equations: theory and applications*, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Translated from the German. MR**0443083****2.**L. Arnold,*A new example of an unstable system being stabilized by random parameter noise*, Proceedings of Bremer Konferenz zur Chemie (Univ. Bremen, Bremen, 1978), Part II, 1979, pp. 133–140. MR**561695****3.**L. Arnold, H. Crauel, and V. Wihstutz,*Stabilization of linear systems by noise*, SIAM J. Control Optim.**21**(1983), no. 3, 451–461. MR**696907**, 10.1137/0321027**4.**Ludwig Arnold and Peter Kloeden,*Lyapunov exponents and rotation number of two-dimensional systems with telegraphic noise*, SIAM J. Appl. Math.**49**(1989), no. 4, 1242–1274. MR**1005508**, 10.1137/0149075**5.**T. Caraballo, K. Liu and X. Mao: On stabilization of partial differential equations by noise, Nagoya Math. J. 161, 2001, 155-170.**6.**G. Da Prato and J. Zabczyk: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications vol.44, Cambridge University Press, Cambridge, 1992.**7.**Anna A. Kwiecińska,*Stabilization of partial differential equations by noise*, Stochastic Process. Appl.**79**(1999), no. 2, 179–184. MR**1671827**, 10.1016/S0304-4149(98)00080-5**8.**Gottlieb Leha, Bohdan Maslowski, and Gunter Ritter,*Stability of solutions to semilinear stochastic evolution equations*, Stochastic Anal. Appl.**17**(1999), no. 6, 1009–1051. MR**1721932**, 10.1080/07362999908809647**9.**É. Pardoux and V. Wihstutz,*Lyapunov exponent and rotation number of two-dimensional linear stochastic systems with small diffusion*, SIAM J. Appl. Math.**48**(1988), no. 2, 442–457. MR**933045**, 10.1137/0148024**10.**É. Pardoux and V. Wihstutz,*Lyapounov exponent of linear stochastic systems with large diffusion term*, Stochastic Process. Appl.**40**(1992), no. 2, 289–308. MR**1158027**, 10.1016/0304-4149(92)90015-I**11.**A. Pazy,*Semigroups of linear operators and applications to partial differential equations*, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR**710486**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
35K90,
37L55,
47D06

Retrieve articles in all journals with MSC (2000): 35K90, 37L55, 47D06

Additional Information

**Anna A. Kwiecinska**

Affiliation:
Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-950 Warszawa, Poland

Email:
akwiecin@impan.gov.pl

DOI:
http://dx.doi.org/10.1090/S0002-9939-02-06443-2

Received by editor(s):
April 2, 2001

Received by editor(s) in revised form:
June 1, 2001

Published electronically:
March 29, 2002

Additional Notes:
This research was partially supported by KBN grant 2 P03A 016 16

Communicated by:
Claudia M. Neuhauser

Article copyright:
© Copyright 2002
American Mathematical Society