Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Lawlessness and rank restrictions in certain finitary groups


Author: C. J. E. Pinnock
Journal: Proc. Amer. Math. Soc. 130 (2002), 2815-2819
MSC (2000): Primary 20H99, 20E10
DOI: https://doi.org/10.1090/S0002-9939-02-06673-X
Published electronically: May 1, 2002
MathSciNet review: 1908262
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give two applications of the recent classification of locally finite simple finitary skew linear groups. We show that certain irreducible finitary skew linear groups of infinite dimension generate the variety of all groups and have infinite Prüfer rank.


References [Enhancements On Off] (What's this?)

  • 1. J. I. HALL, `Locally finite simple groups of finitary linear transformations', Finite and locally finite groups (eds. B. Hartley, G. M. Seitz, A. V. Borovik and R. M. Bryant), NATO ASI Series C 471 (Kluwer Academic Publishers, 1995), pp. 147-188. MR 96j:20042
  • 2. F. LEINEN and O. PUGLISI, `Countable recognizability of primitive periodic finitary linear groups', Math. Proc. Camb. Phil. Soc. 121 (1997), 425-435. MR 98b:20079
  • 3. P. M. NEUMANN, `The lawlessness of groups of finitary permutations', Arch. Math. 26 (1975), 561-566. MR 54:406
  • 4. R. E. PHILLIPS, `Primitive, Locally Finite, Finitary Linear Groups', Preprint 1997.
  • 5. C. J. E. PINNOCK, `Irreducible and Transitive Locally-Nilpotent by Abelian Finitary Groups', Arch. Math. 74 (2000), 168-172. MR 2001c:20059
  • 6. O. PUGLISI, `Homomorphic Images of Finitary Linear Groups', Arch. Math. 60 (1993), 497-504. MR 94e:20054
  • 7. A. REDFORD, `Residually finite, locally finite, finitary groups', Ph.D. Thesis, Mich. State. Univ., 1996.
  • 8. M. SHIRVANI and B. A. F. WEHRFRITZ, Skew linear groups (Cambridge University Press, 1986). MR 89h:20001
  • 9. I. A. STEWART, `Supersolubility in Certain Skew Linear Groups', J. London Math. Soc. (2) 35 (1987) 91-97. MR 87m:20136
  • 10. B. A. F. WEHRFRITZ, Infinite Linear Groups, (Springer-Verlag, Berlin, 1973). MR 49:436
  • 11. B. A. F. WEHRFRITZ, `Locally Soluble Primitive Finitary Skew Linear Groups', Comm. Alg. 23 (1995), 803-817. MR 96a:20070
  • 12. B. A. F. WEHRFRITZ, `Locally Finite Finitary Skew Linear Groups', Proc. London Math. Soc. (3) 83 (2001), 71-92. MR 2002a:20054
  • 13. H. WIELANDT, Unendliche Permutationgruppen, Lecture Notes: Math. Inst. Univ. Tübingen, 1960

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 20H99, 20E10

Retrieve articles in all journals with MSC (2000): 20H99, 20E10


Additional Information

C. J. E. Pinnock
Affiliation: School of Mathematical Sciences, Queen Mary and Westfield College, University of London, Mile End Road, London E1 4NS, United Kingdom
Address at time of publication: IP Design, Interoute Telecommunications (UK) Ltd., Barnard’s Inn, 86 Fetter Lane, London EC4A 1EN, United Kingdom
Email: C.J.E.Pinnock@qmw.ac.uk, cjep@fawlty.net

DOI: https://doi.org/10.1090/S0002-9939-02-06673-X
Keywords: Finitary group, Pr\"ufer rank, variety
Received by editor(s): November 16, 2000
Published electronically: May 1, 2002
Additional Notes: This work was supported by an EPSRC grant
Communicated by: Lance W. Small
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society