Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$L^p$ boundedness of localization operators associated to left regular representations


Author: M. W. Wong
Journal: Proc. Amer. Math. Soc. 130 (2002), 2911-2919
MSC (2000): Primary 47G10
DOI: https://doi.org/10.1090/S0002-9939-02-06685-6
Published electronically: May 8, 2002
MathSciNet review: 1908914
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove an $L^p$ boundedness result for localization operators associated to left regular representations of locally compact and Hausdorff groups and give an application to wavelet multipliers.


References [Enhancements On Off] (What's this?)

  • 1. A. L. Carey, Square integrable representations of non-unimodular groups, Bull. Austral. Math. Soc. 15 (1976), 1-12. MR 55:3153
  • 2. I. Daubechies, Time-frequency localization operators: a geometric phase space approach, IEEE Trans. Inform. Theory 34 (1988), 605-612. CMP 21:03
  • 3. I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992. MR 93e:42045
  • 4. M. Duflo and C. C. Moore, On the regular representation of a nonunimodular locally compact group, J. Funct. Anal. 21 (1976), 209-243. MR 52:14145
  • 5. J. Du and M. W. Wong, Traces of localization operators, C. R. Math. Rep. Acad. Sci. Canada 22 (2000), 92-95. MR 2001c:47053
  • 6. J. Du and M. W. Wong, Traces of wavelet multipliers, C.R. Math. Acad. Sci. Soc. R. Can. 23 (2001), 148-152.
  • 7. G. B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, 1995. MR 98c:43001
  • 8. A. Grossmann, J. Morlet and T. Paul, Transforms associated to square integrable group representations I: general results, J. Math. Phys. 26 (1985), 2473-2479. MR 86k:22013
  • 9. Z. He and M. W. Wong, Localization operators associated to square integrable group representations, Panamer Math. J. 6(1) (1996), 93-104. MR 97d:43009
  • 10. Z. He and M. W. Wong, Wavelet multipliers and signals, J. Austral. Math. Soc. Ser. B 40 (1999), 437-446. MR 2001a:42040
  • 11. H. Kumano-go, Pseudo-Differential Operators, MIT Press, 1981. MR 84c:35113
  • 12. H. J. Landau and H. O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty II, Bell Syst. Tech. J. 40 (1961), 65-84. MR 25:4147
  • 13. H. J. Landau and H. O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty III, Bell Syst. Tech. J. 41 (1962), 1295-1336. MR 26:5200
  • 14. D. Slepian, On bandwidth, Proc. IEEE 64 (1976), 292-300. MR 57:2738
  • 15. D. Slepian, Some comments on Fourier analysis, uncertainty and modeling, SIAM Rev. 25 (1983), 379-393. MR 84i:94016
  • 16. D. Slepian and H. O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty I, Bell Syst. Tech. J. 40 (1961), 43-64. MR 25:4146
  • 17. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, 1971. MR 46:4102
  • 18. M. W. Wong, Weyl Transforms, Springer-Verlag, 1998. MR 2000c:47098
  • 19. M. W. Wong, An Introduction to Pseudo-Differential Operators, Second Edition, World Scientific, 1999. MR 2000c:35002
  • 20. M. W. Wong, Localization Operators, Lecture Notes Series 47, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1999. MR 2002c:22010

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47G10

Retrieve articles in all journals with MSC (2000): 47G10


Additional Information

M. W. Wong
Affiliation: Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
Email: mwwong@pascal.math.yorku.ca

DOI: https://doi.org/10.1090/S0002-9939-02-06685-6
Received by editor(s): February 21, 2001
Published electronically: May 8, 2002
Additional Notes: This research has been partially supported by the Natural Sciences and Engineering Research Council of Canada under Grant OGP0008562
Communicated by: David R. Larson
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society