Reducibility modulo of complex representations of finite groups of Lie type: Asymptotical result and small characteristic cases
Authors:
Pham Huu Tiep and A. E. Zalesskii
Journal:
Proc. Amer. Math. Soc. 130 (2002), 31773184
MSC (1991):
Primary 20C33, 20C20
Published electronically:
March 25, 2002
MathSciNet review:
1912995
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be a finite group of Lie type in characteristic . This paper addresses the problem of describing the irreducible complex (or adic) representations of that remain absolutely irreducible under the Brauer reduction modulo . An efficient approach to solve this problem for has been elaborated in earlier papers by the authors. In this paper, we use arithmetical properties of character degrees to solve this problem for the groups
provided that . We also prove an asymptotical result, which solves the problem for all finite groups of Lie type over with large enough.
 [Atlas]
J.
H. Conway, R.
T. Curtis, S.
P. Norton, R.
A. Parker, and R.
A. Wilson, Atlas of finite groups, Oxford University Press,
Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups;
With computational assistance from J. G. Thackray. MR 827219
(88g:20025)
 [B]
Seminar on Algebraic Groups and Related Finite Groups. (Held at The
Institute for Advanced Study, Princeton, N. J., 1968/69), Lecture
Notes in Mathematics, Vol. 131, SpringerVerlag, BerlinNew York, 1970. MR 0258840
(41 #3486)
 [C1]
R.
W. Carter, Centralizers of semisimple elements in the finite
classical groups, Proc. London Math. Soc. (3) 42
(1981), no. 1, 1–41. MR 602121
(82c:20040), http://dx.doi.org/10.1112/plms/s342.1.1
 [C2]
Roger
W. Carter, Finite groups of Lie type, Pure and Applied
Mathematics (New York), John Wiley & Sons, Inc., New York, 1985.
Conjugacy classes and complex characters; A WileyInterscience Publication.
MR 794307
(87d:20060)
Roger
W. Carter, Simple groups of Lie type, Wiley Classics Library,
John Wiley & Sons, Inc., New York, 1989. Reprint of the 1972 original;
A WileyInterscience Publication. MR 1013112
(90g:20001)
 [CR]
Bomshik
Chang and Rimhak
Ree, The characters of 𝐺₂(𝑞), Symposia
Mathematica, Vol. XIII (Convegno di Gruppi e loro Rappresentazioni, INDAM,
Rome,1972), Academic Press, London, 1974, pp. 395–413. MR 0364419
(51 #673)
 [D]
D.
I. Deriziotis, The centralizers of semisimple elements of the
Chevalley groups 𝐸₇ and 𝐸₈, Tokyo J.
Math. 6 (1983), no. 1, 191–216. MR 707848
(85g:20060), http://dx.doi.org/10.3836/tjm/1270214335
 [DL]
D.
I. Deriziotis and Martin
W. Liebeck, Centralizers of semisimple elements in finite twisted
groups of Lie type, J. London Math. Soc. (2) 31
(1985), no. 1, 48–54. MR 810561
(87e:20087), http://dx.doi.org/10.1112/jlms/s231.1.48
 [DM]
D.
I. Deriziotis and G.
O. Michler, Character table and blocks of finite
simple triality groups ³𝐷₄(𝑞), Trans. Amer. Math. Soc. 303 (1987), no. 1, 39–70. MR 896007
(88j:20011), http://dx.doi.org/10.1090/S00029947198708960079
 [DiM]
François
Digne and Jean
Michel, Representations of finite groups of Lie type, London
Mathematical Society Student Texts, vol. 21, Cambridge University
Press, Cambridge, 1991. MR 1118841
(92g:20063)
 [Do]
Larry
Dornhoff, Group representation theory. Part B: Modular
representation theory, Marcel Dekker, Inc., New York, 1972. Pure and
Applied Mathematics, 7. MR 0347960
(50 #458b)
 [E]
Hikoe
Enomoto, The characters of the finite Chevalley group
𝐺₂(𝑞),𝑞=3^{𝑓}, Japan. J. Math.
(N.S.) 2 (1976), no. 2, 191–248. MR 0437628
(55 #10552)
 [EY]
Hikoe
Enomoto and Hiromichi
Yamada, The characters of 𝐺₂(2ⁿ), Japan.
J. Math. (N.S.) 12 (1986), no. 2, 325–377. MR 914301
(89d:20006)
 [F]
Walter
Feit, The representation theory of finite groups,
NorthHolland Mathematical Library, vol. 25, NorthHolland Publishing
Co., AmsterdamNew York, 1982. MR 661045
(83g:20001)
 [GLS]
Daniel
Gorenstein, Richard
Lyons, and Ronald
Solomon, The classification of the finite simple groups. Number 3.
Part I. Chapter A, Mathematical Surveys and Monographs, vol. 40,
American Mathematical Society, Providence, RI, 1998. Almost simple
𝐾groups. MR 1490581
(98j:20011)
 [Gr]
Benedict
H. Gross, Group representations and
lattices, J. Amer. Math. Soc.
3 (1990), no. 4,
929–960. MR 1071117
(92a:11077), http://dx.doi.org/10.1090/S08940347199010711178
 [J]
J.
C. Jantzen, Representations of Chevalley groups in their own
characteristic, The Arcata Conference on Representations of Finite
Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47,
Amer. Math. Soc., Providence, RI, 1987, pp. 127–146. MR 933356
(89g:20076)
 [JLPW]
Christoph
Jansen, Klaus
Lux, Richard
Parker, and Robert
Wilson, An atlas of Brauer characters, London Mathematical
Society Monographs. New Series, vol. 11, The Clarendon Press, Oxford
University Press, New York, 1995. Appendix 2 by T. Breuer and S. Norton;
Oxford Science Publications. MR 1367961
(96k:20016)
 [L]
George
Lusztig, Characters of reductive groups over a finite field,
Annals of Mathematics Studies, vol. 107, Princeton University Press,
Princeton, NJ, 1984. MR 742472
(86j:20038)
 [Sh1]
Kenichi
Shinoda, The conjugacy classes of Chevalley groups of type
(𝐹₄) over finite fields of characteristic 2, J. Fac.
Sci. Univ. Tokyo Sect. I A Math. 21 (1974), 133–159.
MR
0349863 (50 #2356)
 [Sh2]
Kenichi
Shinoda, The conjugacy classes of the finite Ree groups of type
(𝐹₄), J. Fac. Sci. Univ. Tokyo Sect. I A Math.
22 (1975), 1–15. MR 0372064
(51 #8281)
 [Sho]
Toshiaki
Shoji, The conjugacy classes of Chevalley groups of type
(𝐹₄) over finite fields of characteristic
𝑝̸=2, J. Fac. Sci. Univ. Tokyo Sect. IA Math.
21 (1974), 1–17. MR 0357641
(50 #10109)
 [St]
Robert
Steinberg, Lectures on Chevalley groups, Yale University, New
Haven, Conn., 1968. Notes prepared by John Faulkner and Robert Wilson. MR 0466335
(57 #6215)
 [Su]
Michio
Suzuki, On a class of doubly transitive groups, Ann. of Math.
(2) 75 (1962), 105–145. MR 0136646
(25 #112)
 [T]
J.
G. Thompson, Finite groups and even lattices, J. Algebra
38 (1976), no. 2, 523–524. MR 0399257
(53 #3108)
 [TZ1]
Pham Huu Tiep and A. E. Zalesskii, Mod reducibility of unramified representations of finite groups of Lie type, Proc. London Math. Soc. 84 (2002), 343374.
 [TZ2]
Pham Huu Tiep and A. E. Zalesskii, Strong rationality of unipotent elements and realization fields of complex representations of finite groups of Lie type (submitted).
 [V]
F.
D. Veldkamp, Representations of algebraic groups of type
𝐹₄ in characteristic 2, J. Algebra 16
(1970), 326–339. MR 0269756
(42 #4651)
 [Zs]
K. Zsigmondy, Zur Theorie der Potenzreste, Monath. Math. Phys. 3 , .
 [Atlas]
 J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, `An ATLAS of Finite Groups', Clarendon Press, Oxford, . MR 88g:20025
 [B]
 A. Borel, R. Carter, C. W. Curtis, N. Iwahori, T. A. Springer, R. Steinberg, `Seminar on Algebraic Groups and Related Finite Groups', Lect. Notes in Math., vol. 131, SpringerVerlag, Berlin, . MR 41:3486
 [C1]
 R. W. Carter, Centralizers of semisimple elements in the finite classical groups, Proc. London Math. Soc. 42 , . MR 82c:20040
 [C2]
 R. Carter, `Finite Groups of Lie type: Conjugacy Classes and Complex Characters', Wiley, Chichester, . MR 87d:20060; reprint MR 90g:20001
 [CR]
 B. Chang and R. Ree, The characters of , Symp. Math. 13 , . MR 51:673
 [D]
 D. I. Deriziotis, The centralizers of semisimple elements of the Chevalley groups and , Tokyo J. Math. 6 , . MR 85g:20060
 [DL]
 D. I. Deriziotis and M. W. Liebeck, Centralizers of semisimple elements in finite twisted groups of Lie type, J. London Math. Soc. 31 , . MR 87e:20087
 [DM]
 D. I. Deriziotis and G. O. Michler, Character table and blocks of finite simple triality groups , Trans. Amer. Math. Soc. 303 , . MR 88j:20011
 [DiM]
 F. Digne and J. Michel, `Representations of Finite Groups of Lie Type', London Mathematical Society Student Texts , Cambridge University Press, . MR 92g:20063
 [Do]
 L. Dornhoff, `Group Representation Theory', Marcel Dekker, New York, . MR 50:458b
 [E]
 H. Enomoto, The characters of , , Japan. J. Math. 2 , . MR 55:10552
 [EY]
 H. Enomoto and H. Yamada, The characters of , Japan. J. Math. 12 , . MR 89d:20006
 [F]
 W. Feit, `The Representation Theory of Finite Groups', NorthHolland, Amsterdam, . MR 83g:20001
 [GLS]
 D. Gorenstein, R. Lyons, and R. Solomon, `The classification of the finite simple groups. Number 3. Part I. Chapter A. Almost simple groups', Mathematical Surveys and Monographs, 40.3. American Mathematical Society, Providence, RI, 1998. MR 98j:20011
 [Gr]
 B. H. Gross, Group representations and lattices, J. Amer. Math. Soc. 3 (1990), . MR 92a:11077
 [J]
 J. C. Jantzen, Representations of Chevalley groups in their own characteristic, Proc. Symp. Pure Math. vol. 47 , pt. 1, . MR 89g:20076
 [JLPW]
 C. Jansen, K. Lux, R. A. Parker and R. A. Wilson, `An Atlas of Brauer Characters', Oxford University Press, Oxford, . MR 96k:20016
 [L]
 G. Lusztig, `Characters of reductive groups over a finite field', Annals of Math. Studies 107, Princeton Univ. Press, Princeton, . MR 86j:20038
 [Sh1]
 K. Shinoda, The conjugacy classes of Chevalley groups of type over finite fields of characteristic , J. Fac. Sci. Univ. Tokyo Sect. IA Math. 21 , . MR 50:2356
 [Sh2]
 K. Shinoda, The conjugacy classes of the finite Ree groups of type , J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22 , . MR 51:8281
 [Sho]
 T. Shoji, The conjugacy classes of Chevalley groups of type over finite fields of characteristic , J. Fac. Sci. Univ. Tokyo Sect. IA Math. 21 , . MR 50:10109
 [St]
 R. Steinberg, `Lectures on Chevalley Groups', Yale Univ., . MR 57:6215
 [Su]
 M. Suzuki, On a class of doubly transitive groups, Ann. of Math. 75 , . MR 25:112
 [T]
 J. G. Thompson, Finite groups and even lattices, J. Algebra 38 , . MR 53:3108
 [TZ1]
 Pham Huu Tiep and A. E. Zalesskii, Mod reducibility of unramified representations of finite groups of Lie type, Proc. London Math. Soc. 84 (2002), 343374.
 [TZ2]
 Pham Huu Tiep and A. E. Zalesskii, Strong rationality of unipotent elements and realization fields of complex representations of finite groups of Lie type (submitted).
 [V]
 F. D. Veldkamp, Representations of algebraic groups of type in characteristic , J. Algebra 16 , . MR 42:4651
 [Zs]
 K. Zsigmondy, Zur Theorie der Potenzreste, Monath. Math. Phys. 3 , .
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
20C33,
20C20
Retrieve articles in all journals
with MSC (1991):
20C33,
20C20
Additional Information
Pham Huu Tiep
Affiliation:
Department of Mathematics, University of Florida, Gainesville, Florida 326118105
Email:
tiep@math.ufl.edu
A. E. Zalesskii
Affiliation:
School of Mathematics, University of East Anglia, Norwich NR4 7TJ, United Kingdom
Email:
a.zalesskii@uea.ac.uk
DOI:
http://dx.doi.org/10.1090/S0002993902064596
PII:
S 00029939(02)064596
Keywords:
Finite groups of Lie type,
reduction modulo $p$,
Steinberg representation
Received by editor(s):
March 21, 2001
Received by editor(s) in revised form:
June 12, 2001
Published electronically:
March 25, 2002
Additional Notes:
The first author was partially supported by the NSF grant DMS0070647 and by a research award from the College of Liberal Arts and Sciences, University of Florida.
The authors are grateful to Professor J. G. Thompson and Professor B. H. Gross for constant encouragement. The authors are also thankful to the referee for helpful comments on the paper.
Communicated by:
Stephen D. Smith
Article copyright:
© Copyright 2002
American Mathematical Society
