Reducibility modulo of complex representations of finite groups of Lie type: Asymptotical result and small characteristic cases

Authors:
Pham Huu Tiep and A. E. Zalesskii

Journal:
Proc. Amer. Math. Soc. **130** (2002), 3177-3184

MSC (1991):
Primary 20C33, 20C20

Published electronically:
March 25, 2002

MathSciNet review:
1912995

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a finite group of Lie type in characteristic . This paper addresses the problem of describing the irreducible complex (or -adic) representations of that remain absolutely irreducible under the Brauer reduction modulo . An efficient approach to solve this problem for has been elaborated in earlier papers by the authors. In this paper, we use arithmetical properties of character degrees to solve this problem for the groups

provided that . We also prove an asymptotical result, which solves the problem for all finite groups of Lie type over with large enough.

**[Atlas]**J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson,*Atlas of finite groups*, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR**827219****[B]***Seminar on Algebraic Groups and Related Finite Groups. (Held at The Institute for Advanced Study, Princeton, N. J., 1968/69)*, Lecture Notes in Mathematics, Vol. 131, Springer-Verlag, Berlin-New York, 1970. MR**0258840****[C1]**R. W. Carter,*Centralizers of semisimple elements in the finite classical groups*, Proc. London Math. Soc. (3)**42**(1981), no. 1, 1–41. MR**602121**, 10.1112/plms/s3-42.1.1**[C2]**Roger W. Carter,*Finite groups of Lie type*, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR**794307**

Roger W. Carter,*Simple groups of Lie type*, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1989. Reprint of the 1972 original; A Wiley-Interscience Publication. MR**1013112****[CR]**Bomshik Chang and Rimhak Ree,*The characters of 𝐺₂(𝑞)*, Symposia Mathematica, Vol. XIII (Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome,1972), Academic Press, London, 1974, pp. 395–413. MR**0364419****[D]**D. I. Deriziotis,*The centralizers of semisimple elements of the Chevalley groups 𝐸₇ and 𝐸₈*, Tokyo J. Math.**6**(1983), no. 1, 191–216. MR**707848**, 10.3836/tjm/1270214335**[DL]**D. I. Deriziotis and Martin W. Liebeck,*Centralizers of semisimple elements in finite twisted groups of Lie type*, J. London Math. Soc. (2)**31**(1985), no. 1, 48–54. MR**810561**, 10.1112/jlms/s2-31.1.48**[DM]**D. I. Deriziotis and G. O. Michler,*Character table and blocks of finite simple triality groups ³𝐷₄(𝑞)*, Trans. Amer. Math. Soc.**303**(1987), no. 1, 39–70. MR**896007**, 10.1090/S0002-9947-1987-0896007-9**[DiM]**François Digne and Jean Michel,*Representations of finite groups of Lie type*, London Mathematical Society Student Texts, vol. 21, Cambridge University Press, Cambridge, 1991. MR**1118841****[Do]**Larry Dornhoff,*Group representation theory. Part B: Modular representation theory*, Marcel Dekker, Inc., New York, 1972. Pure and Applied Mathematics, 7. MR**0347960****[E]**Hikoe Enomoto,*The characters of the finite Chevalley group 𝐺₂(𝑞),𝑞=3^{𝑓}*, Japan. J. Math. (N.S.)**2**(1976), no. 2, 191–248. MR**0437628****[EY]**Hikoe Enomoto and Hiromichi Yamada,*The characters of 𝐺₂(2ⁿ)*, Japan. J. Math. (N.S.)**12**(1986), no. 2, 325–377. MR**914301****[F]**Walter Feit,*The representation theory of finite groups*, North-Holland Mathematical Library, vol. 25, North-Holland Publishing Co., Amsterdam-New York, 1982. MR**661045****[GLS]**Daniel Gorenstein, Richard Lyons, and Ronald Solomon,*The classification of the finite simple groups. Number 3. Part I. Chapter A*, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1998. Almost simple 𝐾-groups. MR**1490581****[Gr]**Benedict H. Gross,*Group representations and lattices*, J. Amer. Math. Soc.**3**(1990), no. 4, 929–960. MR**1071117**, 10.1090/S0894-0347-1990-1071117-8**[J]**J. C. Jantzen,*Representations of Chevalley groups in their own characteristic*, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 127–146. MR**933356****[JLPW]**Christoph Jansen, Klaus Lux, Richard Parker, and Robert Wilson,*An atlas of Brauer characters*, London Mathematical Society Monographs. New Series, vol. 11, The Clarendon Press, Oxford University Press, New York, 1995. Appendix 2 by T. Breuer and S. Norton; Oxford Science Publications. MR**1367961****[L]**George Lusztig,*Characters of reductive groups over a finite field*, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR**742472****[Sh1]**Ken-ichi Shinoda,*The conjugacy classes of Chevalley groups of type (𝐹₄) over finite fields of characteristic 2*, J. Fac. Sci. Univ. Tokyo Sect. I A Math.**21**(1974), 133–159. MR**0349863****[Sh2]**Ken-ichi Shinoda,*The conjugacy classes of the finite Ree groups of type (𝐹₄)*, J. Fac. Sci. Univ. Tokyo Sect. I A Math.**22**(1975), 1–15. MR**0372064****[Sho]**Toshiaki Shoji,*The conjugacy classes of Chevalley groups of type (𝐹₄) over finite fields of characteristic 𝑝̸=2*, J. Fac. Sci. Univ. Tokyo Sect. IA Math.**21**(1974), 1–17. MR**0357641****[St]**Robert Steinberg,*Lectures on Chevalley groups*, Yale University, New Haven, Conn., 1968. Notes prepared by John Faulkner and Robert Wilson. MR**0466335****[Su]**Michio Suzuki,*On a class of doubly transitive groups*, Ann. of Math. (2)**75**(1962), 105–145. MR**0136646****[T]**J. G. Thompson,*Finite groups and even lattices*, J. Algebra**38**(1976), no. 2, 523–524. MR**0399257****[TZ1]**Pham Huu Tiep and A. E. Zalesskii, Mod reducibility of unramified representations of finite groups of Lie type,*Proc. London Math. Soc.***84**(2002), 343-374.**[TZ2]**Pham Huu Tiep and A. E. Zalesskii, Strong rationality of unipotent elements and realization fields of complex representations of finite groups of Lie type (submitted).**[V]**F. D. Veldkamp,*Representations of algebraic groups of type 𝐹₄ in characteristic 2*, J. Algebra**16**(1970), 326–339. MR**0269756****[Zs]**K. Zsigmondy, Zur Theorie der Potenzreste,*Monath. Math. Phys.***3**, .

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
20C33,
20C20

Retrieve articles in all journals with MSC (1991): 20C33, 20C20

Additional Information

**Pham Huu Tiep**

Affiliation:
Department of Mathematics, University of Florida, Gainesville, Florida 32611-8105

Email:
tiep@math.ufl.edu

**A. E. Zalesskii**

Affiliation:
School of Mathematics, University of East Anglia, Norwich NR4 7TJ, United Kingdom

Email:
a.zalesskii@uea.ac.uk

DOI:
https://doi.org/10.1090/S0002-9939-02-06459-6

Keywords:
Finite groups of Lie type,
reduction modulo $p$,
Steinberg representation

Received by editor(s):
March 21, 2001

Received by editor(s) in revised form:
June 12, 2001

Published electronically:
March 25, 2002

Additional Notes:
The first author was partially supported by the NSF grant DMS-0070647 and by a research award from the College of Liberal Arts and Sciences, University of Florida.

The authors are grateful to Professor J. G. Thompson and Professor B. H. Gross for constant encouragement. The authors are also thankful to the referee for helpful comments on the paper.

Communicated by:
Stephen D. Smith

Article copyright:
© Copyright 2002
American Mathematical Society