Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Reducibility modulo $p$ of complex representations of finite groups of Lie type: Asymptotical result and small characteristic cases


Authors: Pham Huu Tiep and A. E. Zalesskii
Journal: Proc. Amer. Math. Soc. 130 (2002), 3177-3184
MSC (1991): Primary 20C33, 20C20
DOI: https://doi.org/10.1090/S0002-9939-02-06459-6
Published electronically: March 25, 2002
MathSciNet review: 1912995
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $G$ be a finite group of Lie type in characteristic $p$. This paper addresses the problem of describing the irreducible complex (or $p$-adic) representations of $G$ that remain absolutely irreducible under the Brauer reduction modulo $p$. An efficient approach to solve this problem for $p > 3$has been elaborated in earlier papers by the authors. In this paper, we use arithmetical properties of character degrees to solve this problem for the groups

\begin{displaymath}G \in \{ \hspace{0.5mm}^{2}\hspace*{-0.6mm} B_{2}(q), \hspace... ...{4}(q),F_{4}(q), \hspace{0.5mm}^{3}\hspace*{-0.6mm} D_{4}(q)\} \end{displaymath}

provided that $p \leq 3$. We also prove an asymptotical result, which solves the problem for all finite groups of Lie type over ${\mathbb F}_{q}$ with $q$ large enough.


References [Enhancements On Off] (What's this?)

  • [Atlas] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, `An ATLAS of Finite Groups', Clarendon Press, Oxford, $1985$. MR 88g:20025
  • [B] A. Borel, R. Carter, C. W. Curtis, N. Iwahori, T. A. Springer, R. Steinberg, `Seminar on Algebraic Groups and Related Finite Groups', Lect. Notes in Math., vol. 131, Springer-Verlag, Berlin, $1970$. MR 41:3486
  • [C1] R. W. Carter, Centralizers of semisimple elements in the finite classical groups, Proc. London Math. Soc. 42 $(1981)$, $1 - 41$. MR 82c:20040
  • [C2] R. Carter, `Finite Groups of Lie type: Conjugacy Classes and Complex Characters', Wiley, Chichester, $1985$. MR 87d:20060; reprint MR 90g:20001
  • [CR] B. Chang and R. Ree, The characters of $G_{2}(q)$, Symp. Math. 13 $(1974)$, $395 - 413$. MR 51:673
  • [D] D. I. Deriziotis, The centralizers of semisimple elements of the Chevalley groups $E_{7}$ and $E_{8}$, Tokyo J. Math. 6 $(1983)$, $191 - 216$. MR 85g:20060
  • [DL] D. I. Deriziotis and M. W. Liebeck, Centralizers of semisimple elements in finite twisted groups of Lie type, J. London Math. Soc. 31 $(1985)$, $48 - 54$. MR 87e:20087
  • [DM] D. I. Deriziotis and G. O. Michler, Character table and blocks of finite simple triality groups $\hspace{0.5mm}^{3}\hspace*{-0.8mm}D_{4}(q)$, Trans. Amer. Math. Soc. 303 $(1987)$, $39 - 70$. MR 88j:20011
  • [DiM] F. Digne and J. Michel, `Representations of Finite Groups of Lie Type', London Mathematical Society Student Texts $21$, Cambridge University Press, $1991$. MR 92g:20063
  • [Do] L. Dornhoff, `Group Representation Theory', Marcel Dekker, New York, $1972$. MR 50:458b
  • [E] H. Enomoto, The characters of $G_{2}(q)$, $q = 3^{f}$, Japan. J. Math. 2 $(1976)$, $191 - 248$. MR 55:10552
  • [EY] H. Enomoto and H. Yamada, The characters of $G_{2}(2^{n})$, Japan. J. Math. 12 $(1986)$, $325 - 377$. MR 89d:20006
  • [F] W. Feit, `The Representation Theory of Finite Groups', North-Holland, Amsterdam, $1982$. MR 83g:20001
  • [GLS] D. Gorenstein, R. Lyons, and R. Solomon, `The classification of the finite simple groups. Number 3. Part I. Chapter A. Almost simple $K$-groups', Mathematical Surveys and Monographs, 40.3. American Mathematical Society, Providence, RI, 1998. MR 98j:20011
  • [Gr] B. H. Gross, Group representations and lattices, J. Amer. Math. Soc. 3 (1990), $929 - 960$. MR 92a:11077
  • [J] J. C. Jantzen, Representations of Chevalley groups in their own characteristic, Proc. Symp. Pure Math. vol. 47 $(1987)$, pt. 1, $127 - 146$. MR 89g:20076
  • [JLPW] C. Jansen, K. Lux, R. A. Parker and R. A. Wilson, `An Atlas of Brauer Characters', Oxford University Press, Oxford, $1995$. MR 96k:20016
  • [L] G. Lusztig, `Characters of reductive groups over a finite field', Annals of Math. Studies 107, Princeton Univ. Press, Princeton, $1984$. MR 86j:20038
  • [Sh1] K. Shinoda, The conjugacy classes of Chevalley groups of type $(F_{4})$ over finite fields of characteristic $2$, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 21 $(1974)$, $133 - 159$. MR 50:2356
  • [Sh2] K. Shinoda, The conjugacy classes of the finite Ree groups of type $F_{4}$, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22 $(1975)$, $1 - 15$. MR 51:8281
  • [Sho] T. Shoji, The conjugacy classes of Chevalley groups of type $(F_{4})$ over finite fields of characteristic $p \neq 2$, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 21 $(1974)$, $1 - 17$. MR 50:10109
  • [St] R. Steinberg, `Lectures on Chevalley Groups', Yale Univ., $1967$. MR 57:6215
  • [Su] M. Suzuki, On a class of doubly transitive groups, Ann. of Math. 75 $(1962)$, $105 - 145$. MR 25:112
  • [T] J. G. Thompson, Finite groups and even lattices, J. Algebra 38 $(1976)$, $523 - 524$. MR 53:3108
  • [TZ1] Pham Huu Tiep and A. E. Zalesskii, Mod $p$reducibility of unramified representations of finite groups of Lie type, Proc. London Math. Soc. 84 (2002), 343-374.
  • [TZ2] Pham Huu Tiep and A. E. Zalesskii, Strong rationality of unipotent elements and realization fields of complex representations of finite groups of Lie type (submitted).
  • [V] F. D. Veldkamp, Representations of algebraic groups of type $F_{4}$ in characteristic $2$, J. Algebra 16 $(1970)$, $326 - 339$. MR 42:4651
  • [Zs] K. Zsigmondy, Zur Theorie der Potenzreste, Monath. Math. Phys. 3 $(1892)$, $265 - 284$.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 20C33, 20C20

Retrieve articles in all journals with MSC (1991): 20C33, 20C20


Additional Information

Pham Huu Tiep
Affiliation: Department of Mathematics, University of Florida, Gainesville, Florida 32611-8105
Email: tiep@math.ufl.edu

A. E. Zalesskii
Affiliation: School of Mathematics, University of East Anglia, Norwich NR4 7TJ, United Kingdom
Email: a.zalesskii@uea.ac.uk

DOI: https://doi.org/10.1090/S0002-9939-02-06459-6
Keywords: Finite groups of Lie type, reduction modulo $p$, Steinberg representation
Received by editor(s): March 21, 2001
Received by editor(s) in revised form: June 12, 2001
Published electronically: March 25, 2002
Additional Notes: The first author was partially supported by the NSF grant DMS-0070647 and by a research award from the College of Liberal Arts and Sciences, University of Florida.
The authors are grateful to Professor J. G. Thompson and Professor B. H. Gross for constant encouragement. The authors are also thankful to the referee for helpful comments on the paper.
Communicated by: Stephen D. Smith
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society