A note concerning the index of the shift

Author:
John R. Akeroyd

Journal:
Proc. Amer. Math. Soc. **130** (2002), 3349-3354

MSC (2000):
Primary 47A53, 47B20, 47B38; Secondary 30E10, 46E15

DOI:
https://doi.org/10.1090/S0002-9939-02-06464-X

Published electronically:
April 11, 2002

MathSciNet review:
1913014

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a finite, positive Borel measure with support in such that - the closure of the polynomials in - is irreducible and each point in is a bounded point evaluation for . We show that if and there is a nontrivial subarc of such that

then for each nontrivial closed invariant subspace for the shift on .

**[A1]**J. Akeroyd, Another look at some index theorems for the shift, Indiana Univ. Math. J., vol. 50, no. 2 (2001), 705-718.**[A2]**J. Akeroyd, An Extension of Szegö's Theorem II, Indiana Univ. Math. J., vol. 45, no. 1 (1996), 241-252. MR**97h:30055****[ABFP]**C. Apostol, H. Bercovici, C. Foias, C. Pearcy, Invariant subspaces, dilation theory, and the structure of the predual of a dual algebra, I, J. of Funct. Analysis 63 (1985), 369-404. MR**87i:47004a****[C]**J. B. Conway,*The Theory of Subnormal Operators*, Math. Surveys Monographs, Vol. 36 (1991), Amer. Math. Soc., Providence, RI. MR**92h:47026****[CY]**J. B. Conway, L. Yang, Some open problems in the theory of subnormal operators,*Holomorphic spaces*, Cambridge University Press, vol. 33, 1998, 201-209. MR**99e:47027****[H]**K. Hoffman,*Banach Spaces of Analytic Functions*, Prentice-Hall, Englewood Cliffs, N.J., 1962. MR**24:A2844****[HRS]**H. Hedenmalm, S. Richter, K. Seip, Interpolating sequences and invariant subspaces of given index in the Bergman spaces, J. Reine Angew. Math., 477 (1996), 13-30. MR**97i:46044****[KM]**T. L. Kriete, B. D. MacCluer, Mean-square approximation by polynomials on the unit disk, Trans. Amer. Math. Soc., vol. 322, no. 1 (1990), 1-34. MR**91b:30119****[M]**T. L. Miller, Some subnormal operators not in , J. Functional Analysis, 82 (1989), 296-302. MR**90c:47040****[OT]**R. F. Olin, J. E. Thomson, Some index theorems for subnormal operators, J. Operator Theory, 3 (1980), 115-142. MR**81f:47031****[OY1]**R. F. Olin, L. Yang, A subnormal operator and its dual, Canad. J. Math., vol. 48, no. 2 (1996), 381-396. MR**98j:47055****[OY2]**R. F. Olin, L. Yang, The commutant of multiplication by on the closure of the polynomials in , J. of Funct. Analysis, vol. 134, no. 2 (1995), 297-320. MR**97m:47023****[T]**J. E. Thomson, Approximation in the mean by polynomials, Ann. of Math. (2) 133 (1991), 477-507. MR**93g:47026****[TY]**J. E. Thomson, L. Yang, Invariant subspaces with the codimension one property in , Indiana Univ. Math. J., vol. 44, no. 4 (1995), 1163-1173. MR**97c:47036****[Y]**L. Yang, Invariant subspaces of the Bergman space and some subnormal operators in , Mich. Math. J. 42 (1995), 301-310. MR**96f:47013**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
47A53,
47B20,
47B38,
30E10,
46E15

Retrieve articles in all journals with MSC (2000): 47A53, 47B20, 47B38, 30E10, 46E15

Additional Information

**John R. Akeroyd**

Affiliation:
Department of Mathematics, University of Arkansas, Fayetteville, Arkansas 72701

Email:
jakeroyd@comp.uark.edu

DOI:
https://doi.org/10.1090/S0002-9939-02-06464-X

Received by editor(s):
April 17, 2001

Received by editor(s) in revised form:
June 19, 2001

Published electronically:
April 11, 2002

Communicated by:
Joseph A. Ball

Article copyright:
© Copyright 2002
American Mathematical Society