Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


A note concerning the index of the shift

Author: John R. Akeroyd
Journal: Proc. Amer. Math. Soc. 130 (2002), 3349-3354
MSC (2000): Primary 47A53, 47B20, 47B38; Secondary 30E10, 46E15
Published electronically: April 11, 2002
MathSciNet review: 1913014
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\mu$ be a finite, positive Borel measure with support in $\{z: \vert z\vert \leq 1\}$such that $P^2(\mu)$ - the closure of the polynomials in $L^2(\mu)$ - is irreducible and each point in $\mathbb{D} := \{z: \vert z\vert < 1\}$ is a bounded point evaluation for $P^2(\mu)$. We show that if $\mu(\partial{\mathbb{D}}) > 0$and there is a nontrivial subarc $\gamma$of $\partial{\mathbb{D}}$ such that

\begin{displaymath}\int_{\gamma}log(\mbox{\small {$\frac{d\mu}{dm}$ }})dm > -\infty,\end{displaymath}

then $\dim(\mathcal{M}\ominus z\mathcal{M}) = 1$ for each nontrivial closed invariant subspace $\mathcal{M}$ for the shift $M_z$ on $P^2(\mu)$.

References [Enhancements On Off] (What's this?)

  • [A1] J. Akeroyd, Another look at some index theorems for the shift, Indiana Univ. Math. J., vol. 50, no. 2 (2001), 705-718.
  • [A2] J. Akeroyd, An Extension of Szegö's Theorem II, Indiana Univ. Math. J., vol. 45, no. 1 (1996), 241-252. MR 97h:30055
  • [ABFP] C. Apostol, H. Bercovici, C. Foias, C. Pearcy, Invariant subspaces, dilation theory, and the structure of the predual of a dual algebra, I, J. of Funct. Analysis 63 (1985), 369-404. MR 87i:47004a
  • [C] J. B. Conway, The Theory of Subnormal Operators, Math. Surveys Monographs, Vol. 36 (1991), Amer. Math. Soc., Providence, RI. MR 92h:47026
  • [CY] J. B. Conway, L. Yang, Some open problems in the theory of subnormal operators, Holomorphic spaces, Cambridge University Press, vol. 33, 1998, 201-209. MR 99e:47027
  • [H] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, N.J., 1962. MR 24:A2844
  • [HRS] H. Hedenmalm, S. Richter, K. Seip, Interpolating sequences and invariant subspaces of given index in the Bergman spaces, J. Reine Angew. Math., 477 (1996), 13-30. MR 97i:46044
  • [KM] T. L. Kriete, B. D. MacCluer, Mean-square approximation by polynomials on the unit disk, Trans. Amer. Math. Soc., vol. 322, no. 1 (1990), 1-34. MR 91b:30119
  • [M] T. L. Miller, Some subnormal operators not in $\mathbf{A_2}$, J. Functional Analysis, 82 (1989), 296-302. MR 90c:47040
  • [OT] R. F. Olin, J. E. Thomson, Some index theorems for subnormal operators, J. Operator Theory, 3 (1980), 115-142. MR 81f:47031
  • [OY1] R. F. Olin, L. Yang, A subnormal operator and its dual, Canad. J. Math., vol. 48, no. 2 (1996), 381-396. MR 98j:47055
  • [OY2] R. F. Olin, L. Yang, The commutant of multiplication by $z$ on the closure of the polynomials in $L^t(\mu)$, J. of Funct. Analysis, vol. 134, no. 2 (1995), 297-320. MR 97m:47023
  • [T] J. E. Thomson, Approximation in the mean by polynomials, Ann. of Math. (2) 133 (1991), 477-507. MR 93g:47026
  • [TY] J. E. Thomson, L. Yang, Invariant subspaces with the codimension one property in $L^t(\mu)$, Indiana Univ. Math. J., vol. 44, no. 4 (1995), 1163-1173. MR 97c:47036
  • [Y] L. Yang, Invariant subspaces of the Bergman space and some subnormal operators in $\mathbf{A_1}\hspace{-1mm}\setminus\hspace{-1mm}\mathbf{A_2}$, Mich. Math. J. 42 (1995), 301-310. MR 96f:47013

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47A53, 47B20, 47B38, 30E10, 46E15

Retrieve articles in all journals with MSC (2000): 47A53, 47B20, 47B38, 30E10, 46E15

Additional Information

John R. Akeroyd
Affiliation: Department of Mathematics, University of Arkansas, Fayetteville, Arkansas 72701

PII: S 0002-9939(02)06464-X
Received by editor(s): April 17, 2001
Received by editor(s) in revised form: June 19, 2001
Published electronically: April 11, 2002
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2002 American Mathematical Society