Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Interpolation in self-adjoint settings


Authors: Y. S. Jo, J. H. Kang, R. L. Moore and T. T. Trent
Journal: Proc. Amer. Math. Soc. 130 (2002), 3269-3281
MSC (2000): Primary 46L10, 47L35
DOI: https://doi.org/10.1090/S0002-9939-02-06610-8
Published electronically: June 11, 2002
MathSciNet review: 1913006
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the operator equation $AX=Y$, where the operators $X$ and $Y$are given and the operator $A$ is required to lie in some von Neumann algebra. We derive a necessary and sufficient condition for the existence of a solution $A$. The condition is that there must exist a constant $K$ so that, for all finite collections of operators $\{D_{1},D_{2}, \dots , D_{n}\}$ in the commutant, and all collections of vectors $\{f_{1}, f_{2}, \dots , f_{n}\}$, we have $\Vert\sum _{j=1}^{n} D_{j} Y f_{j} \Vert\leq K\, \Vert\sum _{j=1}^{n} D_{j} X f_{j} \Vert\;. $We also study the equality $\Vert DYf\Vert= K\Vert DXf\Vert$, in connection with solving the equation $AX=Y$ where the operator $A$ is required to lie in some CSL algebra.


References [Enhancements On Off] (What's this?)

  • 1. W. Arveson, Operator algebras and invariant subspaces, Annals of Math. 100 (3) (1974), 433-532. MR 51:1420
  • 2. R. G. Douglas, On Majorization, Factorization, and Range Inclusion of Operators on Hilbert Space, Proceedings of American Mathematical Society 17 (1966), 413-415. MR 34:3315
  • 3. A. Hopenwasser, The Equation $Tx=y$ in a Reflexive Operator Algebra, Indiana University Mathematics Journal 29 (1980), 121-126. MR 81c:47014
  • 4. E. Katsoulis, Remarks on the Interpolation and the Similarity Problem for Nest Subalgebras of von Neumann Algebras, Journal of Mathematical Analysis and Applications 190 (1995), 755-762. MR 96b:47051
  • 5. E.C. Lance, Some Properties of Nest Algebras, Proceedings of the London Mathematical Society (3) 19 (1969), 45-68. MR 39:3325
  • 6. H. Meschkowski, Hilbertsche Räume mit Kernfunktion, Springer Verlag, Berlin, 1962. MR 25:4326
  • 7. R.L. Moore and T.T. Trent, Solving Operator Equations in Nest Algebras, Houston Journal of Mathematics 24 (1998), 483-488. MR 2000a:47149
  • 8. R.L. Moore and T.T. Trent, Factoring Positive Operators on Reproducing Kernel Hilbert Spaces, Journal of Integral Equations and Operator Theory 24 (1996), 470-483. MR 97f:47017

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46L10, 47L35

Retrieve articles in all journals with MSC (2000): 46L10, 47L35


Additional Information

Y. S. Jo
Affiliation: Department of Mathematics, Keimyung University, Taegu, Korea

J. H. Kang
Affiliation: Department of Mathematics, Taegu University, Taegu 712-714, Korea

R. L. Moore
Affiliation: Department of Mathematics, Box 870350, University of Alabama, Tuscaloosa, Alabama 35487-0350
Email: rmoore@gp.as.ua.edu

T. T. Trent
Affiliation: Department of Mathematics, Box 870350, University of Alabama, Tuscaloosa, Alabama 35487-0350
Email: ttrent@gp.as.ua.edu

DOI: https://doi.org/10.1090/S0002-9939-02-06610-8
Received by editor(s): September 1, 2000
Received by editor(s) in revised form: June 7, 2001
Published electronically: June 11, 2002
Communicated by: David R. Larson
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society