Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On dynamics of vertices of locally connected polynomial Julia sets

Authors: A. Blokh and G. Levin
Journal: Proc. Amer. Math. Soc. 130 (2002), 3219-3230
MSC (2000): Primary 37F10; Secondary 37E25
Published electronically: May 29, 2002
MathSciNet review: 1912999
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $P$ be a polynomial whose Julia set $J$ is locally connected. Then a non-preperiodic non-precritical vertex of $J$must have the limit set which coincides with the limit set of an appropriately chosen recurrent critical point of $P$. In particular, if all critical points of $P$ are non-recurrent then all vertices of $J$ are preperiodic or precritical.

References [Enhancements On Off] (What's this?)

  • [BL1] A. Blokh, G. Levin, An inequality for laminations, Julia sets and ``growing trees'', Erg. Th. and Dyn. Syst. 22 (2002), 63-97.
  • [BL2] -, Growing trees, laminations and the dynamics on the Julia set, IHES Preprint IHES/M/99/77 (1999).
  • [BM] A. Blokh, M. Misiurewicz, Attractors for graph critical rational functions, Trans. Amer. Math. Soc. (to appear).
  • [BO] A. Blokh, l. Oversteegen, Backward stability for polynomial maps with locally connected Julia sets, Preprint, 2000.
  • [BH] B. Branner, J. Hubbard, The iteration of cubic polynomials. Part II: Patterns and parapatterns., Act Math. 169 (1992), 229-325. MR 94d:30044
  • [CJY] L. Carleson, P. Jones, J.-C. Yoccoz, Julia and John, Bol. Soc. Brasil. Mat. 25 (1994), 1-30. MR 95d:30040
  • [CL] E. F. Collingwood, A. J. Lohwater, The Theory of Cluster Sets, Cambridge University Press, Cambridge, 1966. MR 38:325
  • [Do] A. Douady, Descriptions of compact sets in ${\mathbb{C} } $, Topological methods in modern mathematics, Publish or Perish, 1993, pp. 429-465. MR 94g:58185
  • [DH] A. Douady and J. H. Hubbard, Étude dynamique des polynômes complexes I, II, Publication Mathematiques d'Orsay, vol. 84-2, 1984; vol. 85-04, 1985. MR 87f:58072a; MR 87f:58072b
  • [F] P. Fatou, Sur les equations fonctionnelles, Bull. Soc. Math. France 47 (1919), 161-271; vol. 48, 1920, pp. 33-94, 208-314.
  • [H] J. H. Hubbard, Local connectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoccoz, Topological methods in modern mathematics, Publish or Perish, 1993, pp. 467-511. MR 94c:58172
  • [J] G. Julia, Memoire sur l'iteration des fonctions rationelles, J. Math. Pure Appl. 8 (1919), 47-245.
  • [Ki] J. Kiwi, Rational rays and critical portraits of complex polynomials, SUNY at Stony Brook and IMS Preprint #1997/15.
  • [Kur] C. Kuratowski, Topologie, vol. 2, Warszawa-Wroc\law, 1950. MR 12:517a
  • [L] G. Levin, On backward stability of holomorphic dynamical systems, Fundamenta Mathematicae 158 (1998), 97-107. MR 99j:58171
  • [McM] C. T. McMullen, Complex dynamics and renormalization, Annals of Mathematical Studies, vol. 135, Princeton University Press, Princeton, NJ, 1994. MR 96b:58097
  • [Mi] J. Milnor, Dynamics in One Complex Variable: Introductory Lectures, SUNY at Stony Brook and IMS Preprint #1990/5.
  • [Po] A. Poirier, On post critically finite polynomials. Part two: Hubbard trees, SUNY at Stony Brook and IMS Preprint #1993/7.
  • [Sul] D. Sullivan, Conformal dynamical systems, in: Geometric Dynamics, Lecture Notes in Math., vol. 1007, Springer Verlag, NY, 1983, pp. 725-752. MR 85m:58112
  • [Th] W. Thurston, The combinatorics of iterated rational maps, Preprint, 1985.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 37F10, 37E25

Retrieve articles in all journals with MSC (2000): 37F10, 37E25

Additional Information

A. Blokh
Affiliation: Department of Mathematics, University of Alabama in Birmingham, University Station, Birmingham, Alabama 35294-2060

G. Levin
Affiliation: Institute of Mathematics, Hebrew University, Givat Ram, 91904 Jerusalem, Israel

Keywords: Julia set, vertices, laminations, recurrent critical points
Received by editor(s): December 22, 2000
Published electronically: May 29, 2002
Additional Notes: The first author was partially supported by NSF grant DMS 9970363.
Communicated by: Michael Handel
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society