Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Cohomological dimension of certain algebraic varieties


Authors: K. Divaani-Aazar, R. Naghipour and M. Tousi
Journal: Proc. Amer. Math. Soc. 130 (2002), 3537-3544
MSC (2000): Primary 13D45, 14B15
DOI: https://doi.org/10.1090/S0002-9939-02-06500-0
Published electronically: May 14, 2002
MathSciNet review: 1918830
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\mathfrak a$ be an ideal of a commutative Noetherian ring $R$. For finitely generated $R$-modules $M$ and $N$ with $\operatorname{Supp} N\subseteq\operatorname{Supp} M$, it is shown that $\mathrm{cd}(\mathfrak {a},N)\leq \mathrm{cd}(\mathfrak {a},M)$. Let $N$ be a finitely generated module over a local ring $(R,\mathfrak m)$ such that $\operatorname{Min}_{\hat{R}}\hat{N}=\operatorname{Assh}_{\hat{R}}\hat{N}$. Using the above result and the notion of connectedness dimension, it is proved that $\mathrm{cd}(\mathfrak {a},N)\geq\dim N-c(N/\mathfrak {a} N)-1.$ Here $c(N)$ denotes the connectedness dimension of the topological space $\operatorname{Supp} N$. Finally, as a consequence of this inequality, two previously known generalizations of Faltings' connectedness theorem are improved.


References [Enhancements On Off] (What's this?)

  • 1. Y. Aoyama, Some basic results on canonical modules, J. Math. Kyoto Univ., 23-1 (1983), 85-94. MR 84i:13015
  • 2. Y. Aoyama, S.Goto, On the endomorphism ring of the canonical module, J. Math. Kyoto Univ., 25-1 (1985), 21-30. MR 86e:13021
  • 3. M. Brodmann, R. Y. Sharp: Local cohomology-An algebraic introduction with geometric applications, Cambr. Univ. Press, 1998. MR 99h:13020
  • 4. D. Delfino, A vanishing theorem for local cohomology modules, J. Pure. Appl. Algebra 115 (1997), 107-111. MR 98f:13015
  • 5. K. Divaani-Aazar, P. Schenzel, Ideal topologies, local cohomology and connectedness, Math. Proc. Camb. Phil. Soc 131 (2001), 211-226. CMP 2002:01
  • 6. G. Faltings, Some theorems about formal functions, Publ. of R.I.M.S. Kyoto 16 (1980), 721-737. MR 82h:14004
  • 7. G. Faltings, Über lokale Kohomologiegruppen hoher Ordnung, J. Reine Angew. Math. 313 (1980), 43-51. MR 82f:14006
  • 8. A. Grothendieck, Cohomologie local des faisceaux coherents et theorems de Lefschetz locaux et globaux (SGA2), Seminaire de Geometrie Algebrique du Bois Marie 1962 (North-Holland, Amsterdam 1968). MR 57:16294
  • 9. R. Hartshorne, Cohomological dimension of algebraic varieties, Annals of Math. 88 (1968), 403-450. MR 38:1103
  • 10. M. Hochster, C. Huneke, Indecomposable canonical modules and connectedness, Contemporary Mathematics 159 (1994), 197-208. MR 95e:13014
  • 11. C. Huneke, G. Lyubeznik, On the vanishing of local cohomology modules, Inv. Math. 102 (1990), 73-93. MR 91i:13020
  • 12. W. Vasconcelos, Divisor theory in module categories (North-Holland, Amsterdam, 1974). MR 58:16637

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 13D45, 14B15

Retrieve articles in all journals with MSC (2000): 13D45, 14B15


Additional Information

K. Divaani-Aazar
Affiliation: Institute for Studies in Theoretical Physics and Mathematics, P.O. Box 19395-5746, Tehran, Iran – and – Department of Mathematics, Az-Zahra University, Tehran, Iran
Email: kdivaani@ipm.ir

R. Naghipour
Affiliation: Institute for Studies in Theoretical Physics and Mathematics, P.O. Box 19395-5746, Tehran, Iran – and – Department of Mathematics, University of Tabriz, Tabriz, Iran
Email: naghipour@tabrizu.ac.ir

M. Tousi
Affiliation: Institute for Studies in Theoretical Physics and Mathematics, P.O. Box 19395-5746, Tehran, Iran – and – Department of Mathematics, Shahid Beheshti University, Tehran, Iran
Email: mtousi@vax.ipm.ac.ir

DOI: https://doi.org/10.1090/S0002-9939-02-06500-0
Keywords: Cohomological dimension, connectedness dimension, subdimension, canonical module
Received by editor(s): October 17, 2000
Received by editor(s) in revised form: August 3, 2001
Published electronically: May 14, 2002
Additional Notes: This research was supported in part by a grant from IPM
Dedicated: Dedicated to Professor Hossein Zakeri
Communicated by: Wolmer V. Vasconcelos
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society