COHOMOLOGICAL DIMENSION
OF CERTAIN ALGEBRAIC VARIETIES

K. DIVAANI-AAZAR, R. NAGHIPOUR, AND M. TOUSI

(Communicated by Wolmer V. Vasconcelos)

Dedicated to Professor Hossein Zakeri

ABSTRACT. Let \(a \) be an ideal of a commutative Noetherian ring \(R \). For finitely generated \(R \)-modules \(M \) and \(N \) with \(\text{Supp} \ N \subseteq \text{Supp} \ M \), it is shown that \(\text{cd}(a,N) \leq \text{cd}(a,M) \). Let \(N \) be a finitely generated module over a local ring \((R, m) \) such that \(\text{Min}_R \hat{N} = \text{Assh}_R \hat{N} \). Using the above result and the notion of connectedness dimension, it is proved that \(\text{cd}(a,N) \geq \dim N - c(N/aN) - 1 \). Here \(c(N) \) denotes the connectedness dimension of the topological space \(\text{Supp} N \). Finally, as a consequence of this inequality, two previously known generalizations of Faltings’ connectedness theorem are improved.

1. Introduction

Throughout, let \(R \) denote a commutative Noetherian ring (with identity) and \(a \) an ideal of \(R \). The study of the cohomological dimension and connectedness of algebraic varieties has produced some interesting results and problems in local algebra. For an \(R \)-module \(M \), the cohomological dimension of \(M \) with respect to \(a \) is defined as

\[
\text{cd}(a,M) := \max\{i \in \mathbb{Z} : H^i_a(M) \neq 0\}.
\]

The cohomological dimension has been studied by several authors; see, for example, Faltings [7], Hartshorne [9] and Huneke–Lyubeznik [11]. In particular in [7] and [11], several upper bounds for cohomological dimension were obtained. The main aim of this article is to establish lower bounds for cohomological dimension of finitely generated modules over a local ring. This is done by using the notion of connectedness dimension. For a Noetherian topological space \(X \), the subdimension and connectedness dimension of \(X \) are defined respectively as

\[
s\text{dim} X := \min\{\dim Z : Z \text{ is an irreducible component of } X\}, \quad c(X) := \min\{\dim Z : Z \subseteq X, Z \text{ is closed and } X \setminus Z \text{ is disconnected}\}.
\]

For more details about these notions, we refer the reader to [3] Ch. 19. In particular, if \(M \) is an \(R \)-module and \(\text{Supp} M \) is considered as a subspace of \(\text{Spec} R \) equipped with Zariski topology, we denote \(c(\text{Supp} M) \) and \(s\text{dim}(\text{Supp} M) \) by \(c(M) \) and \(s\text{dim}(M) \) respectively.
and \(s \dim M \) respectively. It is clear from the definition that a Noetherian topological space \(X \) is connected if and only if \(c(X) \geq 0 \). Recall that the dimension of the empty space is defined to be \(-1\).

We shall prove:

Theorem 1.1. Let \((R, \mathfrak{m})\) be a local ring and \(N \) a finitely generated \(R \)-module.

(i) If \(R \) is complete, then \(\text{cd}(a, N) \geq \min\{c(N), s \dim N - 1\} - c(N/aN) \).

(ii) If \(\text{Min}_R \hat{N} = \text{Ass}_{\hat{R}} \hat{N} \), then \(\text{cd}(a, N) \geq \dim N - c(N/aN) - 1 \).

One of our tools for proving Theorem 1.1 is the following, which plays a key rôle in this paper.

Theorem 1.2. Let \(M \) and \(N \) be finitely generated \(R \)-modules with \(\text{Supp} N \subseteq \text{Supp} M \). Then \(\text{cd}(a, N) \leq \text{cd}(a, M) \). In particular, \(\text{cd}(a, N) = \text{cd}(a, M) \) whenever \(\text{Supp} N = \text{Supp} M \).

In [10], M. Hochster and C. Huneke generalized Faltings’ connectedness theorem [6]. Also in [5], P. Schenzel and the first author have proved two generalizations of Faltings’ connectedness theorem. As a consequence of Theorem 1.1(ii), we remove the indecomposability condition in [10, Theorem 3.3] and [5, Theorem 4.3].

Our terminology follows that of [5]. Moreover for an \(R \)-module \(M \), the set of minimal elements of \(\text{Ass}_R M \) is denoted by \(\text{Min}_R M \) and \(\{ p \in \text{Ass} M : \dim R/p = \dim M \} \) by \(\text{Ass}_R M \).

2. Cohomological dimension

First of all, we collect the well known properties of the notion of cohomological dimension in a lemma. Before stating the lemma, recall that the height of an ideal \(a \) with respect to an \(R \)-module \(M \) is defined as \(\text{ht}_M a = \min\{\dim M_p : p \supseteq a\} \).

Lemma 2.1. Let \(a \) denote an ideal of \(R \). Then:

(i) for an \(R \)-module \(M \), \(\text{ht}_M a \leq \text{cd}(a, M) \leq \dim M \),

(ii) \(\text{cd}(a, R) = \max\{\text{cd}(a, N) : N \text{ is an } R\text{-module} \}

\quad = \max\{i \in \mathbb{Z} : H^i_a(N) \neq 0 \text{ for some } R\text{-module } N\} \),

(iii) \(\text{cd}(a, R) \leq \text{ara}(a) \), where \(\text{ara}(a) \) denotes the arithmetic rank of \(a \), and

(iv) if \(f : R \to R' \) is a homomorphism of commutative Noetherian rings, then \(\text{cd}(aR', R') \leq \text{cd}(a, R) \) and, also for any \(R' \)-module \(M \), \(\text{cd}(a, M) = \text{cd}(aR', M) \).

Furthermore if \(f \) is faithfully flat, then \(\text{cd}(aR', R') = \text{cd}(a, R) \).

The following is one of the main results of this paper.

Theorem 2.2. Let \(a \) denote a proper ideal of \(R \) and \(M, N \) two finitely generated \(R \)-modules such that \(\text{Supp} N \subseteq \text{Supp} M \). Then \(\text{cd}(a, N) \leq \text{cd}(a, M) \).

Proof. It is enough to show that \(H^i_a(N) = 0 \) for all \(i \) with \(\text{cd}(a, M) < i \leq \dim M + 1 \), and all finitely generated \(R \)-module \(N \) with \(\text{Supp} N \subseteq \text{Supp} M \). We argue this by descending induction on \(i \). The assertion is clear for \(i = \dim M + 1 \) by Grothendieck vanishing theorem. Now, suppose \(i \leq \dim M \). Since \(\text{Supp} N \subseteq \text{Supp} M \), by Gruson’s theorem [12, Theorem 4.1], there is a chain

\[0 = N_0 \subset N_1 \subset N_2 \subset \cdots \subset N_k = N, \]

such that the factors \(N_j/N_{j-1} \) are homomorphic images of a direct sum of finitely many copies of \(M \). By using short exact sequences, we may reduce the situation to
the case $k = 1$. Then there is an exact sequence
\[0 \to L \to M^n \to N \to 0 \]
for some $n \in \mathbb{N}$ and some finitely generated R-module L. This induces a long exact sequence of local cohomology modules
\[\cdots \to H^i_a(L) \to H^i_a(M^n) \to H^i_a(N) \to H^{i+1}_a(L) \to \cdots, \]
so that, by the inductive hypothesis, $H^{i+1}_a(L) = 0$. Hence $H^i_a(N) = 0$. Thus the argument is complete by induction.

Corollary 2.3. (i) Let $0 \to L \to M \to N \to 0$ be an exact sequence of finitely generated R-modules. Then $\text{cd}(a, M) = \max\{\text{cd}(a, L), \text{cd}(a, N)\}$.

(ii) Let $f : R \to S$ be a monomorphism of commutative Noetherian rings such that S is finitely generated as an R-module. Then for any proper ideal a of R, $\text{cd}(a, R) = \text{cd}(aS, S)$.

(iii) If M is a finitely generated faithful R-module, then $\text{cd}(a, M) = \text{cd}(a, R)$.

Proof. (i) From the long exact sequence
\[\cdots \to H^i_a(L) \to H^i_a(M) \to H^i_a(N) \to H^{i+1}_a(L) \to \cdots, \]
we deduce $\text{cd}(a, M) \leq \max\{\text{cd}(a, L), \text{cd}(a, N)\}$, while Theorem 2.2 implies $\max\{\text{cd}(a, L), \text{cd}(a, N)\} \leq \text{cd}(a, M)$. Therefore (i) holds.

(ii) follows by Lemma 2.1(iv) and Theorem 2.2.

(iii) Clearly $\text{Supp}(M) = \text{Spec } R$, and so the result follows by Theorem 2.2.

Remark 2.4. (i) One can deduce Lemma 2.1(ii) from Theorem 2.2 easily, because $H^i_a(\cdot)$ commutes with direct limits.

(ii) Part (ii) of Corollary 2.3 is proved in [3, Proposition 8.1.2] by using methods of algebraic geometry.

(iii) Let M and N be two finitely generated R-modules such that $M \neq aM$ and that $\text{Supp}(N) \subseteq \text{Supp}(M)$. Then $\text{cd}(a, N) \leq \text{cd}(a, M)$.

(iv) Let M and N be two finitely generated R-modules. For each $i \in \mathbb{N}_0$,
\[\max\{\text{cd}(a, \text{Ext}_i^R(M, N)), \text{cd}(a, \text{Tor}_i^R(M, N))\} \leq \min\{\text{cd}(a, M), \text{cd}(a, N)\}. \]

(v) In view of Corollary 2.3(iii) results concerning cohomological dimension of R with respect to an ideal a can be extended to $\text{cd}(a, M)$ for any finitely generated faithful R-module M. See for example [3, Theorem 2 and Remark].

We shall use the following result in the proof of Theorem 2.7.

Lemma 2.5. Let the situation be as in Lemma 2.1, and let $x \in R$. Then for an R-module M,
\[\text{cd}(a + Rx, M) \leq \text{cd}(a, M) + 1. \]

Proof. Let $b = a + Rx$ and $\text{cd}(a, M) = r$. By [3, Proposition 8.1.2], there is a long exact sequence
\[\cdots \to H^i_b(M) \to H^i_a(M) \to H^i_a(M_x) \to H^{i+1}_b(M) \to H^{i+1}_a(M) \to \cdots \]
where M_x is the localization of M with respect to the multiplicatively closed subset $\{x^i : i \in \mathbb{N}_0\}$ of R. Since $H^i_a(M) = 0$ for all $i > r$, it turns out that $H^i_b(M_x) \cong H^{i+1}_a(M)$ for all $i > r$. Thus each element of $H^i_b(M_x)$ is annihilated by some power of b. By applying the functor $H^i_a(\cdot)$ on the isomorphism $M_x \cong M_x$, $n \in \mathbb{N}$, we
deduce that $H^i_a(M_x) \xrightarrow{x^n} H^i_a(M_x)$ is an isomorphism. But each element of $H^i_a(M_x)$ is annihilated by x^n for some $n \in \mathbb{N}$. This yields that $H^i_a(M_x) = 0$ for all $i > r$. Therefore $H^i_b(M) = 0$ for all $i > r + 1$, as required.

We recall some properties of the notions $c(N)$ and $s\dim N$ in the following lemma (see [3, Ch. 19]).

Lemma 2.6. Let N be a finitely generated R-module. Then the following hold:

(i) $s\dim N = \min\{\dim R/p : p \in \text{Min}_R N\}$,

(ii) $c(N) = \min\{\dim(R/(\bigcap_{p \in A} p + \bigcap_{p \in B} p)) : A \text{ and } B \text{ are non-empty subsets of } \text{Min}_R N \text{ such that } A \cup B = \text{Min}_R N\}$,

(iii) $c(N) \leq s\dim N$, and

(iv) if (R,m) is local, then $c(\text{Supp } N \setminus \{m\}) = c(N) - 1$.

Theorem 2.7. Let a, b be two ideals of a local ring (R,m) and N a finitely generated R-module such that $\min\{\dim N/aN, \dim N/bN\} > \dim N/(a + b)N$.

(i) If $\text{Min}_R N$ consists of a single prime p, then $\text{cd}(a \cap b, N) \geq \dim N - \dim N/(a + b)N - 1$.

(ii) If R is complete, then $\text{cd}(a \cap b, N) \geq \min\{c(N), s\dim N - 1\} - \dim N/(a + b)N$.

Proof. Let $R_1 = R/\text{Ann}_R N$. Then $\text{cd}(a \cap b, N) = \text{cd}((a \cap b)R_1, R_1)$, by Lemma 2.1(iv) and Theorem 2.2. On the other hand one can easily check that $s\dim N = s\dim R_1$ and that $c(N) = c(R_1)$. Therefore we may and do assume that $N = R$. Now, by replacing $\text{ara}(a \cap b)$ by $\text{cd}(a \cap b, R)$ and using Lemma 2.5, we can process similar to the proof of [3, Proposition 19.2.7] to deduce (i). Also, in view of Lemma 2.1(i) and 2.1(iv), one can deduce (ii) by similar argument as in [3, Lemma 19.2.8].

Now, we are ready to state the next main theorem of this section, namely the connectedness bound for a finitely generated module over a complete local ring which is a generalization and refinement of Grothendieck’s connectedness theorem (see [3, Exposé XIII, Théorème 2.1]).

Theorem 2.8. Let a be a proper ideal of a complete local ring (R,m), and let N be a finitely generated R-module. Then $\text{cd}(a, N) \geq \min\{c(N), s\dim N - 1\} - c(N/aN)$.

Proof. Let $\text{Min}_R(N/aN) = \{p_1, \ldots, p_n\}$ and $c := c(N/aN)$. If $n = 1$, we have $c = \dim R/p_1$ (see Lemma 2.6(ii)). Let $p \in \text{Min}_R N$ be such that $p \subseteq p_1$. Then as $\text{Supp } R/p \subseteq \text{Supp } N$, by virtue of Lemmas 2.1(i), 2.1(iv) and Theorem 2.2,

$$\text{ht } p_1/p \leq \text{cd}(p_1/p, R/p) = \text{cd}(p_1, R/p) \leq \text{cd}(p_1, N).$$

Because $\text{Rad}(a + \text{Ann}_R N) = p_1$, it turns out that $\text{cd}(p_1, N) = \text{cd}(a, N)$.

Next, since R/p is catenary, we deduce that $c = \dim R/p - \text{ht } p_1/p \geq s\dim N - \text{cd}(a, N)$, as desired. Accordingly, we may assume that $n > 1$. Then there exist two non-empty subsets A, B of $\text{Min}_R N/aN$ for which $A \cup B = \text{Min}_R N/aN$, and

$c = \dim(R/(\bigcap_{p \in A} p + (\bigcap_{p \in B} p)).$
Moreover, we may assume that $A \cap B = \emptyset$. Put $b := \bigcap_{p \in A} p$ and $c := \bigcap_{p \in B} p$. Then dim $N/bN > c$, dim $N/cN > c$ and $b \cap c = \text{Rad}(a + \text{Ann}_R N)$. Therefore the proof finishes by Theorem 2.7(ii).

Corollary 2.9. Let the situation be as in Theorem 2.8. Then $\text{cd}(a, N) \geq c(N) - c(N/aN) - 1$. Moreover if $|\text{Min}_R N| > 1$, then the inequality is strict.

Proof. The assertion is clear by Theorem 2.8, because, by Lemma 2.6(iii), $c(N) \leq s\text{dim } N$, with strict inequality if $|\text{Min}_R N| > 1$.

3. Connectedness Theorem

In [10], M. Hochster and C. Huneke have extended Faltings’ original connectedness theorem [9] as follows. Let (R, \mathfrak{m}) be an equidimensional complete local ring of dimension d, and a a proper ideal of R. If $H^d_{\mathfrak{m}}(R)$ is indecomposable, then the punctured spectrum of R/a is connected provided $\text{cd}(a, R) \leq d - 2$. Next this result is generalized to finitely generated modules in [5]. In this section, our objective is to remove the indecomposability assumption. To this end, we give a refinement of Theorem 2.8 in Theorem 3.4. Before we do this, we bring some definitions and lemmas.

Definition. Let (R, \mathfrak{m}) be a d-dimensional local ring. A finitely generated R-module K is called the *canonical module of R*, if $K \otimes_R \hat{R} \cong \text{Hom}_R(H^d_{\mathfrak{m}}(R), E(R/\mathfrak{m}))$.

Proposition 3.1. Let p_1, \ldots, p_n be prime ideals of a finite dimensional Noetherian ring R such that $p_i \not\subset p_j$ for all $1 \leq i \neq j \leq n$. Suppose that R is (S_2) and that R_p possesses a canonical module for all $p \in \text{Spec } R$. Also, assume that for each prime ideal p of R, dim $R = \dim R/p + \text{ht } p$. Set $a := \bigcap_{i=1}^m p_i$ and $b = \bigcap_{i=m+1}^n p_i$, for some $1 \leq m < n$. Then

$$\text{cd}(a \cap b, R) \geq \dim R - \dim R/(a + b) - 1.$$

Proof. Let q be a prime ideal of R containing $a + b$ such that $\dim R/(a + b) = \dim R/q$. Our assumption on p_i’s implies that the ideals aR_q and bR_q are not qR_q-primary. Now the claim follows immediately from Lemma 2.1(iv) and the following lemma.

Lemma 3.2. Let (R, \mathfrak{m}) be a (S_2) local ring which possesses a canonical module. Let a and b be two non-\mathfrak{m}-primary ideals of R such that $a + b$ is \mathfrak{m}-primary. Then

$$\text{cd}(a \cap b, R) \geq \dim R - 1.$$

Proof. Assume that the contrary is true. Then the Mayer-Vietoris sequence (see e.g. [3] 3.2.3) yields the isomorphism

$$H^d_{\mathfrak{m}}(R) = H^d_{a+b}(R) \cong H^d_a(R) \oplus H^d_b(R).$$

The module $H^d_{\mathfrak{m}}(R)$ is indecomposable by [2] Remark 1.4 and so either $H^d_a(R) = 0$ or $H^d_b(R) = 0$. Suppose $H^d_a(R) = 0$; then $H^d_{\mathfrak{m}}(R) \cong H^d_b(R)$. It follows from [2] Proposition 1.2 and Lemma 1.1 that $\text{Assh } \hat{R} = \text{Ass } \hat{R}$. By virtue of [3] Ex. 8.2.6, once applied to \mathfrak{m} and a second time applied to a, it follows that $\dim R/aR + p = 0$ for all $p \in \text{Ass } \hat{R}$. This leads that a is \mathfrak{m}-primary, which is a contradiction.

□
Lemma 3.3. Let R be a Noetherian ring such that R is (S_2) and that R_p has a canonical module for all $p \in \text{Spec } R$. Assume that $\dim R$ is finite and that for each $p \in \text{Spec } R$, $\dim R = \dim R/p + \text{ht } p$. Then for each proper ideal \mathfrak{a} of R,

$$\text{cd}(\mathfrak{a}, R) \geq \dim R - c(R/\mathfrak{a}) - 1.$$

Proof. Without loss of generality we can and do assume that $\mathfrak{a} = \text{Rad}(\mathfrak{a})$. Let p_1, \ldots, p_n be the distinct minimal primes of \mathfrak{a}, and let $c := c(R/\mathfrak{a})$. If $n = 1$, we have $\mathfrak{a} = p_1$ and $c = \dim R/p_1$. Hence

$$c = \dim R - \text{ht } p_1 \geq \dim R - \text{cd}(p_1, R).$$

Consider now the case where $n > 1$. By Lemma 2.6(ii), there exist two disjoint non-empty subsets A, B of $\{1, \ldots, n\}$ for which $A \cup B = \{1, \ldots, n\}$ and $c = \dim(R/(\bigcap_{i \in A} p_i) + (\bigcap_{j \in B} p_j))$. Set $b = \bigcap_{i \in A} p_i$ and $c = \bigcap_{j \in B} p_j$. Then $p_i \not\subseteq p_j$ for all $1 \leq i, j \leq n$, and $b \cap c = \mathfrak{a}$. We can now use Proposition 3.1 to complete the proof.

Theorem 3.4. Let \mathfrak{a} be a proper ideal of a local ring (R, m) and let N be a finitely generated R-module such that $\text{Min}_R N = \text{Assh}_R N$. Then

$$\text{cd}(\mathfrak{a}, N) \geq \dim N - c(N/\mathfrak{a}N) - 1.$$

Proof. Let $R_1 = R/\text{Ann}_R N$. Then $c(N/\mathfrak{a}N) = c(R_1/\mathfrak{a}R_1)$ and $\text{cd}(\mathfrak{a}, N) = \text{cd}(\mathfrak{a}R_1, R_1)$ by Lemma 2.1(iv) and Theorem 2.2. On the other hand $\text{Min}_R R_1 = \text{Assh}_R R_1$. Thus it is sufficient to prove the claim for the ring R itself. Since $c(R/\mathfrak{a}) \geq c(\tilde{R}/\tilde{\mathfrak{a}}\tilde{R})$ by [1] Lemma 19.3.1, we can assume that R is complete. Since $\dim R = \dim R$, in view of Theorem 2.8 it is enough to show that $c(R) \geq \dim R - 1$. Let $J = \bigcap q$, where q runs through all the primary components of the zero ideal of R such that $\dim R/q = \dim R$. It is clear that $\dim R/J = \dim R$. Also, since $\text{Min } R = \text{Assh } R$, it follows from Lemma 2.6(ii) that $c(R/J) = c(R)$. Thus by replacing R with R/J, we may assume that $\text{Assh } R = \text{Ass } R$. By [1] 1.11 and Theorem 3.2], there exists a commutative Noetherian semi-local ring S and a monomorphism $\varphi: R \rightarrow S$ such that:

(i) S is finitely generated as an R-module,
(ii) S is $(S_2),$
(iii) S_p has a canonical module for all $p \in \text{Spec } S$, and
(iv) every maximal chain of prime ideals in S is of length $\dim S$.

Let p_1, \ldots, p_n be the distinct minimal prime ideals of R. Then there exist two non-empty subsets A, B of $\{1, \ldots, n\}$ for which $A \cup B = \{1, \ldots, n\}$ and

$$c(R) = \dim(R/(\bigcap_{i \in A} p_i) + (\bigcap_{j \in B} p_j)).$$

Since by condition (i), S is integral over R, it follows that $\dim R = \dim S$ and that for each $1 \leq i \leq n$ there exists $q_i \in \text{Spec } S$ such that $\varphi^{-1}(q_i) = p_i$. For a given prime ideal q of S, we show that $q \in \text{Min } S$ if and only if $p = \varphi^{-1}(q) \in \text{Min } R$. To this end, first note that the ring S/q is integral over the ring R/p, and so $\dim S/q = \dim R/p$. Since $\text{Ass } R = \text{Assh } R$, it turns out that $p \in \text{Min } R$ if and only if $\dim R/p = \dim R$. On the other hand (iv) implies that $q \in \text{Min } S$ if and only if
\[\dim S/q = \dim S. \] Therefore the claim is immediate. Put

\[A' = \{ q \in \operatorname{Min} S : \varphi^{-1}(q) = p_i \text{ for some } i \in A \} \]

and \[B' = \{ q \in \operatorname{Min} S : \varphi^{-1}(q) = p_j \text{ for some } j \in B \}. \] So, we have

\[c(R) \geq \dim S/\left(\bigcap_{q \in A'} q + \bigcap_{q \in B'} q \right) \]

Therefore the result follows by Lemma 3.3. Note that by (iv), for each prime ideal \(p \) of \(S \), \(\dim S = \dim S/p + \operatorname{ht} p \).

Now we are prepared to present the main result of this section which is a generalization of [10, Theorem 3.3] and of [5, Corollary 4.2 and Theorem 4.3].

Corollary 3.5. Let \(a \) be a proper ideal of a local ring \((R, \mathfrak{m})\). Let \(N \) be a \(d \)-dimensional finitely generated \(R \)-module such that \(\operatorname{Ass} \hat{R} \hat{N} = \operatorname{Min} \hat{R} \hat{N} \). Then \(\operatorname{Supp} N/aN \setminus \{ \mathfrak{m} \} \) is connected provided \(\text{cd}(a, N) \leq d - 2 \).

Proof. By Lemma 2.6(iv), \(c(\operatorname{Supp}(N/aN) \setminus \{ \mathfrak{m} \}) = c(N/aN) - 1 \). Hence by Theorem 3.4, \(c(\operatorname{Supp}(N/aN) \setminus \{ \mathfrak{m} \}) \geq \dim N - \text{cd}(a, N) - 2 \). Thus

\[c(\operatorname{Supp}(N/aN) \setminus \{ \mathfrak{m} \}) \geq 0, \]

and so \(\operatorname{Supp}(N/aN) \setminus \{ \mathfrak{m} \} \) is connected, as desired. \(\square \)

References

Institute for Studies in Theoretical Physics and Mathematics, P.O. Box 19395-5746, Tehran, Iran – and – Department of Mathematics, Az-Zahra University, Tehran, Iran

E-mail address: kdivaani@ipm.ir

Institute for Studies in Theoretical Physics and Mathematics, P.O. Box 19395-5746, Tehran, Iran – and – Department of Mathematics, University of Tabriz, Tabriz, Iran

E-mail address: naghipour@tabrizu.ac.ir

Institute for Studies in Theoretical Physics and Mathematics, P.O. Box 19395-5746, Tehran, Iran – and – Department of Mathematics, Shahid Beheshti University, Tehran, Iran

E-mail address: mtousi@vax.ipm.ac.ir