KRULL DIMENSION OF THE ENVELOPING ALGEBRA
OF A SEMISIMPLE LIE ALGEBRA

THIERRY LEVASSEUR

(Communicated by Lance W. Small)

Abstract. Let g be a complex semisimple Lie algebra and $U(g)$ be its enveloping algebra. We deduce from the work of R. Bezrukavnikov, A. Braverman and L. Positselskii that the Krull-Gabriel-Rentschler dimension of $U(g)$ is equal to the dimension of a Borel subalgebra of g.

1. Introduction

The Krull(-Gabriel-Rentschler) dimension of a ring R was introduced in [3] and is denoted by $\text{Kdim } R$. Let g be a semisimple complex Lie algebra and $U(g)$ be its enveloping algebra. It has been conjectured that $\text{Kdim } U(g)$ is equal to $\text{dim } b$ where b is a Borel subalgebra of g. It is easy to see that $\text{Kdim } U(g) \geq \text{dim } b$; indeed, this follows from the fact $U(g)$ is a free (left) module over $U(b)$ and that $\text{Kdim } U(b) = \text{dim } b$ (see [2]). The opposite inequality is therefore the hard part of the conjecture.

P. Smith [10] proved the conjecture for $g = \mathfrak{sl}(2, \mathbb{C})$. Let G be a simply connected semisimple complex algebraic group with Lie algebra g, U be a maximal unipotent subgroup of G and set $X = G/U$ (the “basic affine space”). In [7] it was shown that the conjecture would follow from $\text{Kdim } D(X) \leq \text{dim } X$, where $D(X)$ is the ring of globally defined differential operators on X (in the sense of [5]). This result was established in [7] when g is a direct sum of copies of $\mathfrak{sl}(2, \mathbb{C})$, and in [8] when $g = \mathfrak{sl}(3, \mathbb{C})$. Up to now, these were the only cases known and no progress was made on the conjecture.

The difficulty in the study of $D(X)$ comes from the fact that $D(X) = D(\overline{X})$ for some singular variety \overline{X}. Recently R. Bezrukavnikov, A. Braverman and L. Positselskii were able to prove, among other things, that $D(X)$ is a Noetherian ring. This is deduced from the existence of a finite set $\{F_w\}_{w \in W}$ (W being the Weyl group of g) of automorphisms of $D(X)$ such that: for every $D(X)$-module $M \neq 0$, there exists a twist F_{w_0} of M such that the localization $\mathcal{O}_X \otimes_{\mathcal{O}(X)} M_{F_{w_0}}$ is nonzero. In this note we want to explain how this result easily implies that $\text{Kdim } D(X) \leq \text{dim } X$, and, consequently, $\text{Kdim } U(g) = \text{dim } b$.

Received by the editors July 30, 2001.

2000 Mathematics Subject Classification. Primary 16Sxx, 17Bxx.

Key words and phrases. Krull dimension, semisimple Lie algebra, enveloping algebra, differential operators.
2. Krull dimension

The definitions and general results related to Krull dimension can be found in [9, Chapter 6] and we will simply quote a few facts that we need.

Recall that the deviation of a partially ordered set (poset) \((A, \preceq)\) is defined (when it exists) as follows:

- \(\text{dev} \emptyset = -\infty\);
- \(\text{dev} A = 0\) if and only if \(A\) satisfies the descending chain condition;
- \(\text{dev} A = \alpha\) (some ordinal) if \(\text{dev} A \neq \beta\) for \(\beta < \alpha\), and if \((a_i)_{i \in \mathbb{N}}\) is a descending chain in \(A\), then there exists \(i_0\) such that \(\text{dev}\{x \in A : a_i \succ x \succ a_{i+1}\} < \alpha\) for all \(i \geq i_0\).

For the proof of the next lemma, see [9, 6.1.5, 6.1.6].

Lemma 2.1. (a) Let \(B \hookrightarrow A\) be a strictly increasing map of posets. Then, \(\text{dev} B \leq \text{dev} A\) when \(\text{dev} A\) exists.

(b) If \(A\) satisfies the ascending chain condition, then \(\text{dev} A\) exists.

If \(R\) is a ring we denote by \(R\text{-mod}\) the category of finitely generated left \(R\)-modules. Let \(M \in R\text{-mod}\) and \(\mathcal{L}(M)\) be the lattice of submodules of \(M\). Then \((\mathcal{L}(M), \subseteq)\) is a poset; we say that the Krull dimension of \(M\) exists if \(\mathcal{L}(M)\) has a deviation, in which case we set \(K\text{dim }R M = \text{dev} \mathcal{L}(M)\). By Lemma 2.1, \(K\text{dim }M\) exists if \(R\) is (left) Noetherian and one has \(K\text{dim }R M \leq K\text{dim }R (\text{[9], 6.2.18})\).

Examples.
1. Let \(m\) be a finite dimensional complex Lie algebra and \(l \subset m\) be a subalgebra. Then, \(K\text{dim }U(l) \leq K\text{dim }U(m) \leq \text{dim }m\). When \(m\) is solvable an easy induction on \(\text{dim }m\) (using Lie’s Theorem) shows that \(K\text{dim }U(m) = \text{dim }m\).

2. Let \(D(Z)\) be the ring of differential operators on a smooth affine complex algebraic variety \(Z\). Then \(D(Z)\) is Noetherian and \(K\text{dim }D(Z) = \text{dim }Z\); see [9, 15.1.20, 15.3.7].

We will use the following easy result:

Lemma 2.2. Let \(R_j, j = 1, \ldots, s,\) be some rings and \(M_j \in R_j\text{-mod}\). Then, if \(K\text{dim }M_j\) exists for all \(j\), we have

\[
K\text{dim} \bigoplus_{j=1}^s R_j M_j = \max \{K\text{dim }M_j : j = 1, \ldots, s\}.
\]

Proof. The claim follows from the identification of \(\mathcal{L}(\bigoplus_{j=1}^s M_j)\) with \(\mathcal{L}(M_1) \times \cdots \times \mathcal{L}(M_s)\).

3. Rings of differential operators

If \(Z\) is a complex algebraic variety we denote by \(O_Z\) its structural sheaf and by \(D_Z\) the sheaf of differential operators on \(Z\), as defined in [5]. By taking global sections we get the following \(C\)-algebras:

\[
O(Z) = O_Z(Z), \quad D(Z) = D_Z(Z).
\]

Assume that \(Z\) is smooth and denote by \(D_Z\text{-coh}\) the category of coherent left \(D_Z\)-modules (see [2] for a definition). Recall [2] that when \(Z\) is affine, the functor \(\mathcal{M} \to \Gamma(Z, \mathcal{M})\) yields an equivalence of categories \(D_Z\text{-coh} \cong D(Z)\text{-mod}\).
Notation. Let \overline{X} be an irreducible affine variety and X be a nonempty (dense) open subset of smooth points in \overline{X}. We will work under the following hypothesis:

\overline{X} is normal and $\text{codim}_{\overline{X}}(\overline{X} \setminus X) \geq 2$.

In this situation one has $\mathcal{O}(X) = \mathcal{O}(\overline{X})$ and it is easy to show that this implies $\mathcal{D}(X) = \mathcal{D}(\overline{X})$; see, e.g., [6, II.2, Proposition 2]. Since X is quasi-compact and open in \overline{X}, we can write $X = \bigcup_{i=1}^{s} U_i$, where each U_i is a principal affine open subset of \overline{X}, i.e., $U_i = \{x \in \overline{X} : f_i(x) \neq 0\}$ for some $f_i \in \mathcal{O}(X)$. Recall that $\{f_i^{k}\}_{k \in \mathbb{N}}$ is an Ore subset in $\mathcal{D}(\overline{X})$ and that

$$\mathcal{D}(U_i) = \mathcal{D}(\overline{X})[f_i^{-1}] = \mathcal{O}(X)[f_i^{-1}] \otimes_{\mathcal{O}(X)} \mathcal{D}(X).$$

Therefore, if $\mathcal{M} \in \mathcal{D}_X$-coh, each restriction $\mathcal{M}_{|U_i} \in \mathcal{D}_{U_i}$-coh is determined by $\mathcal{M}(U_i) = \Gamma(U_i, \mathcal{M}) \in \mathcal{D}(U_i)$-mod.

The next lemma is well known, and we include a proof for completeness.

Lemma 3.1. Let $\mathcal{L}(\mathcal{M})$ be the lattice of \mathcal{D}_X-submodules of $\mathcal{M} \in \mathcal{D}_X$-coh. Then $\mathcal{L}(\mathcal{M})$ satisfies the ascending chain condition.

Proof. Let $(\mathcal{M}_j)_{j \in \mathbb{N}}$ be an ascending chain of \mathcal{D}_X-submodules of $\mathcal{M}_0 = \mathcal{M}$. Set $\mathcal{M}_{j,i} = \mathcal{M}_j(U_i)$ for $i = 1, \ldots, s$ and $j \in \mathbb{N}$. Since the functor $\Gamma(U_i, -)$ is left exact, $(\mathcal{M}_{j,i})_{j \in \mathbb{N}}$ is an ascending chain of submodules in the finitely generated $\mathcal{D}(U_i)$-module $\mathcal{M}(U_i)$. Therefore, there exists $j(i) \in \mathbb{N}$ such that $\mathcal{M}_{j,i} = \mathcal{M}_{j(i),i}$ for all $j \geq j(i)$. Set $j_0 = \max\{j(i) : i = 1, \ldots, s\}$; then, since $X = \bigcup_{i=1}^{s} U_i$, we get that $\mathcal{M}_j = \mathcal{M}_{j_0}$ for all $j \geq j_0$.

The previous lemma and [22] enable us to define the Krull dimension of $\mathcal{M} \in \mathcal{D}_X$-coh by

$$\text{Kdim} \mathcal{M} = \text{dev} \mathcal{L}(\mathcal{M}).$$

Proposition 3.2. Let $\mathcal{M} \in \mathcal{D}_X$-coh. Then,

$$\text{Kdim} \mathcal{M} \leq \max\{\text{Kdim}_{\mathcal{D}(U_i)} \mathcal{M}(U_i) : i = 1, \ldots, s\} \leq \dim X.$$

Proof. Observe that $\mathcal{M} = \bigoplus_{i=1}^{s} \mathcal{M}(U_i)$ is a finitely generated module over the ring $R = \bigoplus_{i=1}^{s} \mathcal{D}(U_i)$. As $\Gamma(U_i, -)$ is left exact and $X = \bigcup_{i=1}^{s} U_i$, the map $\mathcal{N} \rightarrow \bigoplus_{i=1}^{s} \mathcal{N}(U_i)$ yields a strictly increasing map from $\mathcal{L}(\mathcal{M})$ to $\mathcal{L}(\mathcal{M})$. Thus, by definition and Lemma 3.1, we obtain

$$\text{Kdim} \mathcal{M} \leq \text{Kdim} M = \max\{\text{Kdim}_{\mathcal{D}(U_i)} \mathcal{M}(U_i) : i = 1, \ldots, s\}.$$

Since $\text{Kdim} \mathcal{D}(U_i) = \dim U_i = \dim X$ for all i (cf. [22] Example 2), the assertion is proved.

Recall that we have a localization functor $L : \mathcal{D}(X)$-mod $\rightarrow \mathcal{D}_X$-coh defined by

$$L(\mathcal{M}) = \mathcal{D}_X \otimes_{\mathcal{D}(X)} \mathcal{M}.$$

Lemma 3.3. The functor L is exact.

Proof. Let $V = \overline{X}_f = \{x \in \overline{X} : f(x) \neq 0\}$, $f \in \mathcal{O}(X)$, be a principal open subset of \overline{X} contained in X. We have already noticed that $\mathcal{D}_X(V) = \mathcal{O}(X)[f^{-1}] \otimes_{\mathcal{O}(X)} \mathcal{D}(X)$, hence

$$\Gamma(V, L(\mathcal{M})) = \mathcal{D}_X(V) \otimes_{\mathcal{D}(X)} \mathcal{M} = \mathcal{O}(X)[f^{-1}] \otimes_{\mathcal{O}(X)} \mathcal{M}.$$
The lemma then follows from the exactness of the localization functor $M \to \mathcal{O}_X \otimes_{\mathcal{O}(X)} M$ on the category $\mathcal{O}(X)$-mod.

Suppose that $\tau \in \text{Aut} \mathcal{D}(X)$ is an automorphism of the algebra $\mathcal{D}(X)$. If $M \in \mathcal{D}(X)$-mod we denote by $M^\tau \in \mathcal{D}(X)$-mod the module defined by: $M^\tau = M$ as an abelian group and $a \cdot v = \tau(a)v$ for all $a \in \mathcal{D}(X)$, $v \in M$. We now make the supplementary hypothesis:

(\mathcal{H}) There exist $\tau_1, \ldots, \tau_p \in \text{Aut} \mathcal{D}(X)$ such that, for every $0 \neq M \in \mathcal{D}(X)$-mod, $L(M^{\tau_j}) \neq 0$ for some $j \in \{1, \ldots, p\}$.

We then define $\lambda(M) \in \mathcal{D}_X$-coh for $M \in \mathcal{D}(X)$-mod by setting

$$\lambda(M) = \bigoplus_{j=1}^p L(M^{\tau_j}).$$

Theorem 3.4. One has $\text{Kdim} M \leq \text{Kdim} \lambda(M)$ for all $M \in \mathcal{D}(X)$-mod. In particular,

$$\text{Kdim} \mathcal{D}(X) \leq \dim X.$$

Proof. The hypothesis (\mathcal{H}) ensures that $N \to \lambda(N)$ is a strictly increasing map from $\mathcal{L}(M)$ to $\mathcal{L}(\lambda(M))$. Thus, using Proposition 3.2,

$$\text{Kdim} M = \text{dev} \mathcal{L}(M) \leq \text{dev} \mathcal{L}(\lambda(M)) = \text{Kdim} \lambda(M) \leq \dim X,$$

as required.

The properties of the map $\lambda : \mathcal{L}(M) \to \mathcal{L}(\lambda(M))$ imply that $M \in \mathcal{D}(X)$-mod is Noetherian; cf. [11, Theorem 1.3].

4. The Krull Dimension of $U(\mathfrak{g})$

Let G be a simply connected semisimple complex algebraic group with Lie algebra \mathfrak{g}. Let U be a maximal unipotent subgroup of G and set $X = G/U$.

Theorem 4.1. The quasi-affine variety X satisfies the hypotheses of (\mathcal{H}) (in particular the hypothesis (\mathcal{H})).

Proof. It is a classical fact that X can be embedded in a normal affine variety \overline{X} such that $\text{codim}(\overline{X} \setminus X) \geq 2$. This can be shown as follows. Let $\varpi_1, \ldots, \varpi_\ell$ be the fundamental dominant weights of \mathfrak{g}; denote by $E(\varpi_j)$, $j = 1, \ldots, \ell$, a simple G-module with highest weight ϖ_j and set $E = \bigoplus_{j=1}^\ell E(\varpi_j)$. If $v_j \in E(\varpi_j)$ is a highest weight vector, the orbit $G.(v_1 \oplus \cdots \oplus v_\ell) \subset E$ is isomorphic to X and its closure \overline{X} (in E) has the required properties, see [4] and [11].

Thanks to [4], each element w of the Weyl group of \mathfrak{g} yields an automorphism $F_w \in \text{Aut} \mathcal{D}(X)$. By [11, Theorem 3.8], for every nonzero $M \in \mathcal{D}(X)$-mod there exists w such that $L(M^{F_w}) \neq 0$. Thus X satisfies the hypothesis (\mathcal{H}).

Observe that $\dim X$ is the dimension of a Borel subalgebra of \mathfrak{g}.

Corollary 4.2. One has

$$\text{Kdim} U(\mathfrak{g}) = \text{Kdim} \mathcal{D}(X) = \dim X.$$

Proof. By Theorem 3.4 we have $\text{Kdim} \mathcal{D}(X) \leq \dim X$. From [7, Proposition 3.2] we know that $\text{Kdim} U(\mathfrak{g}) \leq \text{Kdim} \mathcal{D}(X)$, thus $\text{Kdim} U(\mathfrak{g}) \leq \text{Kdim} \mathcal{D}(X) \leq \dim X$. The result then follows from $\dim X \leq \text{Kdim} U(\mathfrak{g})$ (see [2, Example 1]).
REFERENCES

[8] , La dimension de Krull de U(sl(3)), J. Algebra, 102 (1986), 39-59. MR 87m:17019

DÉPARTEMENT DE MATHEMATIQUES, UNIVERSITÉ DE BREST, 29285 BREST CEDEX, FRANCE
E-mail address: Thierry.Levasseur@univ-brest.fr