Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On the dimension of the space of theta functions

Authors: Daniel Bump and Alexander Pekker
Journal: Proc. Amer. Math. Soc. 130 (2002), 3473-3481
MSC (2000): Primary 14K25
Published electronically: April 22, 2002
MathSciNet review: 1918823
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We compute the dimension of the space of theta functions of a given type using a variant of the Selberg trace formula.

References [Enhancements On Off] (What's this?)

  • 1. V. Bargman, On a Hilbert space of analytic functions and an associated integral transform, Comm. Pure Appl. Math. 14 (1961) 187-214.
  • 2. Pierre Cartier, Quantum mechanical commutation relations and theta functions, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 361–383. MR 0216825
  • 3. M. Eichler, Eine Verallgemeinerung der Abelschen Integrale, Math. Z. 67 (1957), 267–298 (German). MR 0089928
  • 4. G. Frobenius, Über die Grundlagen der Theorie der Jacobischen Functionen, J. Reine Angew. Math. 97 (1884), 188-223.
  • 5. Dennis A. Hejhal, Kernel functions, Poincaré series, and LVA, In the tradition of Ahlfors and Bers (Stony Brook, NY, 1998) Contemp. Math., vol. 256, Amer. Math. Soc., Providence, RI, 2000, pp. 173–201. MR 1759678, 10.1090/conm/256/04005
  • 6. Norman E. Hurt, Geometric quantization in action, Mathematics and Its Applications (East European Series), vol. 8, D. Reidel Publishing Co., Dordrecht-Boston, Mass., 1983. MR 689710
  • 7. Jun-ichi Igusa, Theta functions, Springer-Verlag, New York-Heidelberg, 1972. Die Grundlehren der mathematischen Wissenschaften, Band 194. MR 0325625
  • 8. Serge Lang, Introduction to algebraic and abelian functions, 2nd ed., Graduate Texts in Mathematics, vol. 89, Springer-Verlag, New York-Berlin, 1982. MR 681120
  • 9. D. J. Newman and H. S. Shapiro, Certain Hilbert spaces of entire functions, Bull. Amer. Math. Soc. 72 (1966), 971–977. MR 0205055, 10.1090/S0002-9904-1966-11608-7
  • 10. V. Kumar Murty, Introduction to abelian varieties, CRM Monograph Series, vol. 3, American Mathematical Society, Providence, RI, 1993. MR 1231797
  • 11. Ichiro Satake, Fock representations and theta-functions, Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N. Y., 1969) Ann. of Math. Studies, No. 66. Princeton Univ. Press, Princeton, N. J., 1971, pp. 393–405. MR 0424698
  • 12. Atle Selberg, Collected papers. Vol. I, Springer-Verlag, Berlin, 1989. With a foreword by K. Chandrasekharan. MR 1117906
  • 13. Hideo Shimizu, On discontinuous groups operating on the product of the upper half planes, Ann. of Math. (2) 77 (1963), 33–71. MR 0145106
  • 14. H. P. F. Swinnerton-Dyer, Analytic theory of abelian varieties, Cambridge University Press, London-New York, 1974. London Mathematical Society Lecture Note Series, No. 14. MR 0366934
  • 15. André Weil, Sur certains groupes d’opérateurs unitaires, Acta Math. 111 (1964), 143–211 (French). MR 0165033

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 14K25

Retrieve articles in all journals with MSC (2000): 14K25

Additional Information

Daniel Bump
Affiliation: Department of Mathematics, Stanford University, Stanford, California 94305

Alexander Pekker
Affiliation: Department of Mathematics, Stanford University, Stanford, California 94305
Address at time of publication: 1841 Palisades Drive, Santa Rosa, California 95403

Received by editor(s): July 12, 2001
Published electronically: April 22, 2002
Additional Notes: We would like to thank Dennis Hejhal for help with the references.
Communicated by: Dennis A. Hejhal
Article copyright: © Copyright 2002 American Mathematical Society