ON A PROBLEM OF J. P. WILLIAMS

EDWARD KISSIN AND VICTOR S. SHULMAN

Abstract. Let $B(H)$ be the algebra of all bounded operators on a Hilbert space H. Let g be a continuous function on the closed disk D and let

$$
\|g(A)X - Xg(A)\| \leq C\|AX - XA\|,
$$

for some $C > 0$, for all $X \in B(H)$ and all $A \in B(H)$ with $\|A\| \leq 1$. Then g is differentiable on D. The paper shows that the function g may have a discontinuous derivative.

1. Introduction

Let $B(H)$ be the algebra of all bounded operators on a Hilbert space H and B_1 be the unit ball of $B(H)$. For $A, B \in B(H)$, we denote by $[A, B]$ their commutator $AB - BA$. Let $D = \{z \in \mathbb{C} : |z| \leq 1\}$ be the closed unit disk. In his paper [7], Williams raised the following problem. If g is a continuous complex-valued function on D, possessing the property

$$
\|[g(A), X]\| \leq C\|[A, X]\|,
$$

for some $C > 0$, for any $X \in B(H)$ and any normal operator A in B_1, must g always be continuously differentiable on D?

It should be noted that Johnson and Williams proved earlier [2, Theorem 4.1] that g must be differentiable on D and therefore analytic in the interior D° of D, and its derivative must be bounded on D.

We will show that the answer to Williams’s problem is negative. Moreover, we will show that the function on D may have a discontinuous derivative even if it satisfies (1) for all (not necessarily normal) contractions A.

The authors are grateful to the referee for his useful suggestions.

2. Fully Operator Lipschitz functions

We denote by $A(D)$ the disk algebra: the algebra of all continuous complex-valued functions on D which are analytic on D°. The algebra $A(D)$ is a closed subalgebra of the algebra $C(D)$ of all continuous complex-valued functions on D with the norm $\|g\| = \sup_{z \in D} |g(z)|$. The subalgebra $P(D)$ of all polynomials on D is dense in $A(D)$ (see, for example, [4, §3.2.13]).

Received by the editors March 19, 2001 and, in revised form, July 6, 2001.

2000 Mathematics Subject Classification. Primary 47A56.

©2002 American Mathematical Society
By von Neumann’s theorem (see [3] Proposition I.8.3), \(\|p(A)\| \leq \|p\| \) for any polynomial \(p \) and any \(A \in B_1 \). Therefore functions from \(A(D) \) act on \(B_1 \) and
\[
\|g(A)\| \leq \|g\|, \quad \text{for any } g \in A(D) \text{ and } A \in B_1.
\]
We call a function \(g \in A(D) \) Fully Operator Lipschitzian if there is \(C > 0 \) such that
\[
\|g(A) - g(B)\| \leq C\|A - B\|, \quad \text{for } A, B \in B_1.
\]
The class of Fully Operator Lipschitz functions is contained in the wider class of Operator Lipschitz functions on \(D \) which consists of all continuous functions on \(D \) satisfying inequality (3) for all normal operators in \(B_1 \) (see [3]). The function \(g(z) = \bar{z} \), for example, is Operator Lipschitzian on \(D \), since \(\|A^* - B^*\| = \|A - B\| \), for all normal \(A, B \in B_1 \). However, it is not Fully Operator Lipschitzian. Both classes of functions are important for applications in mathematical physics and have attracted much attention (see, for example, Bibliography in [1]).

Proposition 1. A function \(g \in A(D) \) is Fully Operator Lipschitzian if and only if there is \(C > 0 \) such that
\[
\|g(A), X\| \leq C\|A, X\|, \quad \text{for } A \in B_1 \text{ and } X \in B(H).
\]

Proof. If \(A, B \in B_1 \), the operator \(L = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} \) on \(H \oplus H \) belongs to the unit ball of \(B(H \oplus H) \). Let \(X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \). Clearly, (1) holds for operators on \(H \oplus H \). Hence
\[
\|g(L), X\| \leq C\|L, X\| \quad \text{which implies (3)}.
\]

Conversely, let \(\|A\| < 1 \). For \(X \in B(H) \), the operators \(A(t) = e^{tX}Ae^{-tX} \) belong to \(B_1 \) for sufficiently small \(t \). If (3) holds then, taking into account that \(g(e^{tX}Ae^{-tX}) = e^{tX}g(A)e^{-tX} \), we obtain
\[
\|g(A) - e^{tX}g(A)e^{-tX}\| = \|g(A) - g(e^{tX}Ae^{-tX})\| \leq C\|A - e^{tX}Ae^{-tX}\|.
\]
Dividing through by \(t \) and taking the limit as \(t \to 0 \), we have that (4) holds.

Let \(\|A\| = 1 \), \(X \in B(H) \). For \(r < 1 \), \(\|g(rA), X\| \leq C\|rA, X\| \). Taking the limit as \(r \to 1 \), we obtain that (4) holds.

It follows from Proposition 1 that our aim is to construct a Fully Operator Lipschitz function with discontinuous derivative.

3. **FULLY OPERATOR LIPSCHITZ FUNCTIONS WITH DISCONTINUOUS DERIVATIVE**

Consider the following function on \(D \):
\[
h(1) = 0 \quad \text{and} \quad h(z) = (z - 1)^2 \exp((z - 1)^{-1}), \quad \text{for } z \in D, z \neq 1.
\]
Since \(\frac{x^{-1}}{(x-1)^2 + y^2} < 0 \), if \(z = x + iy \in D \setminus 1 \), we have that
\[
\sup_{z \in D \setminus 1} |\exp((z - 1)^{-1})| = \sup_{z \in D \setminus 1} \left| \frac{(x - 1) - iy}{(x-1)^2 + y^2} \right| = \sup_{z \in D \setminus 1} \left| \frac{x - 1}{(x-1)^2 + y^2} \right| < 1.
\]
The function \(h \) is analytic on \(D^0 \) and continuous on \(D \), since, by (5),
\[
|h(z)| = |h(x + iy)| = |z - 1|^2 \exp((z - 1)^{-1}) \leq |z - 1|^2 \to 0,
\]
as \(z \to 1 \). Thus \(h \in \mathcal{A}(D) \). We obtain similarly that
\[
\left| \frac{h(z) - h(1)}{z - 1} \right| = |z - 1| |\exp((z - 1)^{-1})| \leq |z - 1| \to 0,
\]
as \(z \to 1 \), so \(h'(1) = 0 \). We also obtain that
\[
h'(z) = 2(z - 1) \exp((z - 1)^{-1}) - \exp((z - 1)^{-1}), \quad \text{for } z \in D, \ z \neq 1.
\]
We have, as above, that \((z - 1) \exp((z - 1)^{-1}) \to 0 \), as \(z \to 1 \), while \(\exp((z - 1)^{-1}) \) does not have limit as \(z \to 1 \). Therefore \(h' \) is discontinuous at \(z = 1 \).

Theorem 2. The function \(h \) is Fully Operator Lipschitzian.

Proof. By Proposition 1 we only need to prove that (4) holds for \(h \). For \(0 < \lambda < 1 \), set \(h_\lambda(z) = h(\lambda z) \). Every \(h_\lambda \) is analytic in a neighbourhood of \(D \), so it belongs to \(\mathcal{A}(D) \), and \(\|h - h_\lambda\| \to 0 \), as \(\lambda \to 1 \). Hence it follows from (2) that
\[
\|[h(A), X] - [h_\lambda(A), X]\| = \|[h(A) - h_\lambda(A)), X]\|
\leq 2\|h(A) - h_\lambda(A)\| \|X\| \leq 2\|h - h_\lambda\| \|A\| \|X\| \to 0.
\]
For any \(A \in \mathbf{B}_1 \) and \(X \in B(H) \),
\[
\|[h_\lambda(A), X]\| = \|[(\lambda A - 1) \exp((\lambda A - 1)^{-1})(\lambda A - 1), X]\|
\leq 2\|\lambda A - 1\| \|A, X\| + \|[(\lambda A - 1)[\exp((\lambda A - 1)^{-1}), X](\lambda A - 1)]\|
\]
We have that \(\|\lambda A - 1\| < 2 \) and that the function \(\exp((\lambda z - 1)^{-1}) \) belongs to \(\mathcal{A}(D) \). We obtain from (2) and (5) that
\[
\|\exp((\lambda A - 1)^{-1})\| \leq \|\exp((\lambda z - 1)^{-1})\| \leq \sup_{z \in D, \lambda} \|\exp((z - 1)^{-1})\| < 1.
\]
Therefore
\[
\|[h_\lambda(A), X]\| \leq 4\lambda \|[A, X]\| + \|[(\lambda A - 1)[\exp((\lambda A - 1)^{-1}), X](\lambda A - 1)]\|.
\]
It follows from Lemma 2 of (5) that, for any \(B \in B(H) \),
\[
[\exp(B), X] = \int_0^1 \exp(tB)[B, X] \exp((1 - t)B) \, dt.
\]
If \(B \) is invertible, then \(B[B^{-1}, X]B = [X, B] \). Hence
\[
\|[\lambda A - 1][\exp((\lambda A - 1)^{-1}), X](\lambda A - 1)]\|
\leq \|[X, \lambda A - 1]\| \int_0^1 \|\exp(t(A - 1)^{-1})\| \|\exp((1 - t)(A - 1)^{-1})\| \, dt.
\]
As in (7), we have that
\[\| \exp(t(\lambda A - \mathbf{1})^{-1}) \| < 1 \quad \text{and} \quad \| \exp((1 - t)(\lambda A - \mathbf{1})^{-1}) \| < 1. \]
Therefore
\[\| (\lambda A - \mathbf{1})[\exp((\lambda A - \mathbf{1})^{-1})X(AA - \mathbf{1})] \| \leq \lambda \| [A, X] \|. \]
Hence we obtain from (8) that \(\| h_\lambda(A), X \| \leq 5\lambda \| [A, X] \| \). Combining this with (6), we conclude that \(\| [h(A), X] \| \leq 5\| [A, X] \| \).

References

School of Communications Technology and Mathematical Sciences, University of North London, Holloway, London N7 8DB, Great Britain
E-mail address: e.kissin@unl.ac.uk

School of Communications Technology and Mathematical Sciences, University of North London, Holloway, London N7 8DB, Great Britain – and – Department of Mathematics, Vologda State Technical University, Vologda, Russia
E-mail address: shulman_y@yahoo.com