Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Algebraic obstructions and a complete solution of a rational retraction problem


Author: Riccardo Ghiloni
Journal: Proc. Amer. Math. Soc. 130 (2002), 3525-3535
MSC (2000): Primary 14P05; Secondary 14P20, 14P25
DOI: https://doi.org/10.1090/S0002-9939-02-06617-0
Published electronically: May 15, 2002
MathSciNet review: 1918829
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For each compact smooth manifold $W$ containing at least two points we prove the existence of a compact nonsingular algebraic set $Z$ and a smooth map $g: Z \longrightarrow W$ such that, for every rational diffeomorphism $r:Z'\longrightarrow Z$ and for every diffeomorphism $s: W' \longrightarrow W$ where $Z'$ and $W'$ are compact nonsingular algebraic sets, we may fix a neighborhood $\mathcal{U}$ of $s^{-1} \circ g \circ r$ in $C^{\infty}(Z',W')$ which does not contain any regular rational map. Furthermore $s^{-1} \circ g \circ r$ is not homotopic to any regular rational map. Bearing in mind the case in which $W$ is a compact nonsingular algebraic set with totally algebraic homology, the previous result establishes a clear distinction between the property of a smooth map $f$ to represent an algebraic unoriented bordism class and the property of $f$ to be homotopic to a regular rational map. Furthermore we have: every compact Nash submanifold of $\mathbb{R}^n$ containing at least two points has not any tubular neighborhood with rational retraction.


References [Enhancements On Off] (What's this?)

  • 1. R. Abraham and J. Robbin, Transversal mapping and flows, New York, Benjamin (1967). MR 39:2181
  • 2. S. Akbulut and H. C. King, The topology of real algebraic sets with isolated singularities, Ann. of Math. 113 (1981), no. 3, 425-446. MR 83b:58003
  • 3. S. Akbulut and H. C. King, A resolution theorem for homology cycles of real algebraic varieties, Invent. Math. 79 (1985), no. 3, 589-601. MR 86g:14011
  • 4. S. Akbulut and H. C. King, Submanifolds and homology of nonsingular algebraic varieties, Amer. J. Math. 107 (1985), no. 1, 87-98. MR 93d:57051
  • 5. R. Benedetti and M. Dedò, Counterexamples to representing homology classes by real algebraic subvarieties up to homeomorphism, Compositio Math. 53 (1984), no. 2, 143-151. MR 86h:57031
  • 6. R. Benedetti and A. Tognoli, On real algebraic vector bundles, Bull. Sci. Math. 104 (1980), no. 1, 89-112. MR 81e:14009
  • 7. R. Benedetti and A. Tognoli, Remarks and counterexamples in the theory of real algebraic vector bundles and cycles, Géométrie algébrique réelle et formes quadratiques. Lecture Notes in Math. 959, 198-211, Berlin: Springer-Verlag (1982). MR 85a:14018
  • 8. J. Bochnak, M. Coste and M.-F. Roy, Real Algebraic Geometry, Berlin: Springer-Verlag (1998). MR 2000a:14067
  • 9. J. Bochnak and W. Kucharz, Algebraic approximation of mappings into spheres, Michigan Math. J. 34 (1987), no. 1, 119-125. MR 88h:58018
  • 10. J. Bochnak and W. Kucharz, On real algebraic morphisms into even-dimensional spheres, Ann. of Math. 128 (1988), no. 2, 415-433. MR 89k:57060
  • 11. J. Bochnak and W. Kucharz, Algebraic models of smooth manifolds, Invent. Math. 97 (1989), no. 3, 585-611. MR 91b:14076
  • 12. J. Bochnak and W. Kucharz, Algebraic cycles and approximation theorems in real algebraic geometry, Trans. Amer. Math. Soc. 337 (1993), no. 1, 463-472. MR 93g:57033
  • 13. J. Bochnak and W. Kucharz, Elliptic curves and real algebraic morphisms, J. Algebraic Geom. 2 (1993), no. 4, 635-666. MR 94e:14072
  • 14. J. Bochnak and W. Kucharz, Real algebraic hypersurfaces in complex projective varieties, Math. Ann. 301 (1995), no. 2, 381-397. MR 97d:14081
  • 15. J. Bochnak and W. Kucharz, The Weierstrass approximation theorem and a characterization of the unit circle, Proc. Amer. Math. Soc. 127 (1999), no. 6, 1571-1574. MR 99i:14067
  • 16. J. Bochnak and W. Kucharz, The Weierstrass approximation theorem for maps between real algebraic varieties, Math. Ann. 314 (1999), no. 4, 601-612. MR 2001c:14082
  • 17. J. van Hamel, Real algebraic cycles on complex projective varieties, Math. Z. 225 (1997), no. 2, 177-198. MR 98i:14012
  • 18. N. Ivanov, Approximation of smooth manifolds by real algebraic sets, Russian Math. Surveys 37 (1982), no. 1, 1-59. MR 84i:57029
  • 19. W. Kucharz, On homology of real algebraic sets, Invent. Math. 82 (1985), no. 1, 19-25. MR 87b:57025
  • 20. W. Kucharz, Algebraic morphisms into rational real algebraic surfaces, J. Algebraic Geom. 8 (1999), no. 3, 569-579. MR 2000d:14064
  • 21. F. Lazzeri and A. Tognoli, Alcune proprietà degli spazi algebrici, Ann. Scuola Norm. Sup. Pisa 24 (1970), no. 3, 597-632. MR 45:1909
  • 22. F. Mangolte, Cycles algégriques sur les surfaces $K3$réelles, Math. Z. 225 (1997), no. 4, 559-576. MR 98f:14046
  • 23. J.-J. Risler, Sur l'homologie des surfaces algébriques réelles, Géométrie algébrique réelle et formes quadratiques. Lecture Notes in Math. 959, 381-385, Berlin: Springer-Verlag (1982). MR 84c:14019
  • 24. R. Silhol, A bound on the order of $H_{n-1}^{(a)}(X, {\mathbb{Z}}/2)$ on a real algebraic variety, Géométrie algébrique réelle et formes quadratiques. Lecture Notes in Math. 959, 443-450, Berlin: Springer-Verlag (1982). MR 84e:14024
  • 25. A. Tancredi and A. Tognoli, On the extension of Nash functions, Math. Ann. 228 (1990), no. 4, 595-604. MR 92c:32011
  • 26. P. Teichner, $6$-dimensional manifolds without totally algebraic homology, Proc. Amer. Math. Soc. 123 (1995), no. 9, 2909-2914. MR 95k:57031
  • 27. R. Thom, Quelques propriétés globales des variétiés difféntiables, Comment. Math. Helv. 28 (1954), 17-86. MR 15:890a
  • 28. A. Tognoli, Su una congettura di Nash, Ann. Scuola Norm. Sup. Pisa 27 (1973), no. 3, 167-185. MR 53:434
  • 29. A. Tognoli, Une remarque sur les approximations en géométrie algébrique réelle, C. R. Acad. Sci. Paris S'er. I Math. 296 (1983), no. 17, 745-747. MR 85b:14031

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 14P05, 14P20, 14P25

Retrieve articles in all journals with MSC (2000): 14P05, 14P20, 14P25


Additional Information

Riccardo Ghiloni
Affiliation: Dipartimento di Matematica, University of Pisa, via Buonarroti 2, 56127 Pisa, Italy
Email: ghiloni@mail.dm.unipi.it

DOI: https://doi.org/10.1090/S0002-9939-02-06617-0
Keywords: Algebraic obstructions, regular rational retractions
Received by editor(s): August 1, 2001
Published electronically: May 15, 2002
Communicated by: Paul Goerss
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society