Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Global existence and nonexistence for degenerate parabolic systems


Authors: Yuxiang Li, Weibing Deng and Chunhong Xie
Journal: Proc. Amer. Math. Soc. 130 (2002), 3661-3670
MSC (2000): Primary 35K50, 35K55, 35K65
DOI: https://doi.org/10.1090/S0002-9939-02-06630-3
Published electronically: May 14, 2002
MathSciNet review: 1920046
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The initial-boundary value problems are considered for the strongly coupled degenerate parabolic system

\begin{displaymath}\begin{split} u_t=v^p(\Delta u+au),\\ v_t=u^q(\Delta v+bv) \end{split}\end{displaymath}

in the cylinder $\Omega\times(0,\infty)$, where $\Omega\subset R^N$ is bounded and $p, q, a, b$ are positive constants. We are concerned with the global existence and nonexistence of the positive solutions. Denote by $\lambda_1$ the first Dirichlet eigenvalue for the Laplacian on $\Omega$. We prove that there exists a global solution iff $\lambda_1\geq \min\{a,b\}$.


References [Enhancements On Off] (What's this?)

  • 1. J. R. Anderson, Local existence and uniqueness of solutions of degenerate parabolic equations, Comm. Partial Differential Equations 16 (1991), 105-143. MR 92d:35163
  • 2. R. Courant and D. Hilbert, Methods of mathematical physics I, II, Interscience, New York, 1953, 1962. MR 16:426a; MR 25:4216
  • 3. E. DiBenedetto, Degenerate parabolic equations, Springer-Verlag, New York, 1993. MR 94h:35130
  • 4. E. DiBenedetto, Continuity of weak solutions to a general porous media equation, Indiana Univ. Math. J. 32 (1983), 83-118. MR 85c:35010
  • 5. Z. W. Duan and L. Zhou, Global and blow-up solutions for nonlinear degenerate parabolic systems with crosswise-diffusion, J. Math. Anal. Appl. 244 (2000), 263-278. MR 2001b:35181
  • 6. M. S. Floater, Blow-up at the boundary for degenerate semilinear parabolic equations, Arch. Rational Mech. Anal. 114 (1991), 57-77. MR 92m:35139
  • 7. A. Friedman and B. McLeod, Blow-up of solutions of nonlinear degenerate parabolic equations, Arch. Rational Mech. Anal. 96 (1987), 55-80. MR 87j:35051
  • 8. A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs, N. J., 1964. MR 31:6062
  • 9. V. A. Galaktionov, A boundary value problem for the nonlinear parabolic equation $u_t=\Delta u^{\sigma+1}+u^\beta$, Differential Equations 17 (1981), 836-842. (Russian) MR 82m:35074
  • 10. V. A. Galaktionov, S. P. Kurdyumov and A. Samarskii, A parabolic system of quasi-linear equations I, Differential Equations 19 (1983), 1558-1571.
  • 11. V. A. Galaktionov, S. P. Kurdyumov and A. Samarskii, A parabolic system of quasi-linear equations II, Differential Equations 21 (1985), 1049-1062.
  • 12. H. A. Levine, The role of critical exponents in blowup theorems, SIAM Review 32 (1990), 262-288. MR 91j:35135
  • 13. O. A. Lady$\breve{z}$enskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Amer. Math. Soc., Providence, 1967. MR 39:3159h
  • 14. C. V. Pao, Nonlinear parabolic and elliptic equations, Plenum Press, New York, 1992. MR 94c:35002
  • 15. R. Dal Passo and S. Luckhaus, A degenerate diffusion problem not in divergence form, J. Differential Equations 69 (1987), 1-14. MR 88k:35091
  • 16. M. A. Protter and H. F. Weinberger, Maximum principles in differential equations, Springer-Verlag, 1999.
  • 17. P. Pucci and J. Serrin, A general variational identity, Indiana Univ. Math. J. 35 (1986), 681-703. MR 88b:35072
  • 18. P. E. Sacks, Global behavior for a class of nonlinear evolutionary equations, SIAM J. Math. Anal. 16 (1985), 233-250. MR 86f:35031
  • 19. M. Wiegner, Blow-up for solutions of some degenerate parabolic equations, Differential Integral Equations 7 (1994), 1641-1647. MR 95b:35120
  • 20. S. Wang, M. X. Wang and C. H. Xie, A nonlinear degenerate diffusion equation not in divergence form, Z. Angew. Math. Phys. 51 (2000), 149-159. MR 2001a:35101
  • 21. C. H. Xie, T. P. He and G. H. Bai, Existence and invariance for convection, dispersion, reaction systems with pressure, Acta Math. Sci. 12 (1992), 443-456. MR 94i:35100

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35K50, 35K55, 35K65

Retrieve articles in all journals with MSC (2000): 35K50, 35K55, 35K65


Additional Information

Yuxiang Li
Affiliation: Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China
Email: lieyuxiang@yahoo.com.cn

Weibing Deng
Affiliation: Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China

Chunhong Xie
Affiliation: Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China

DOI: https://doi.org/10.1090/S0002-9939-02-06630-3
Keywords: Global existence, global nonexistence, degenerate parabolic system
Received by editor(s): July 23, 2001
Published electronically: May 14, 2002
Communicated by: David S. Tartakoff
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society