Distinct gaps between fractional parts of sequences

Authors:
Marian Vâjâitu and Alexandru Zaharescu

Journal:
Proc. Amer. Math. Soc. **130** (2002), 3447-3452

MSC (2000):
Primary 11K06, 11B05

Published electronically:
July 15, 2002

MathSciNet review:
1918819

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a real number, a positive integer and a subset of . We give an upper bound for the number of distinct lengths of gaps between the fractional parts .

**[1]**R. C. Baker,*Diophantine inequalities*, London Mathematical Society Monographs. New Series, vol. 1, The Clarendon Press, Oxford University Press, New York, 1986. Oxford Science Publications. MR**865981****[2]**Florin P. Boca and Alexandru Zaharescu,*Pair correlation of values of rational functions (mod 𝑝)*, Duke Math. J.**105**(2000), no. 2, 267–307. MR**1793613**, 10.1215/S0012-7094-00-10524-8**[3]**Jens Marklof,*The 𝑛-point correlations between values of a linear form*, Ergodic Theory Dynam. Systems**20**(2000), no. 4, 1127–1172. With an appendix by Zeév Rudnick. MR**1779397**, 10.1017/S0143385700000626**[4]**Tony van Ravenstein,*The three gap theorem (Steinhaus conjecture)*, J. Austral. Math. Soc. Ser. A**45**(1988), no. 3, 360–370. MR**957201****[5]**Zeév Rudnick and Peter Sarnak,*The pair correlation function of fractional parts of polynomials*, Comm. Math. Phys.**194**(1998), no. 1, 61–70. MR**1628282**, 10.1007/s002200050348**[6]**Zeév Rudnick, Peter Sarnak, and Alexandru Zaharescu,*The distribution of spacings between the fractional parts of 𝑛²𝛼*, Invent. Math.**145**(2001), no. 1, 37–57. MR**1839285**, 10.1007/s002220100141**[7]**Zeév Rudnick and Alexandru Zaharescu,*A metric result on the pair correlation of fractional parts of sequences*, Acta Arith.**89**(1999), no. 3, 283–293. MR**1691857****[8]**Wolfgang M. Schmidt,*Small fractional parts of polynomials*, American Mathematical Society, Providence, R.I., 1977. Regional Conference Series in Mathematics, No. 32. MR**0457360****[9]**SÓS, V. T.,*On the distribution of the sequence n*Ann. Univ. Sci. Budapest, Eötvös Sect. Math.**1**(1958), 127-134.**[10]**S. Świerczkowski,*On successive settings of an arc on the circumference of a circle*, Fund. Math.**46**(1959), 187–189. MR**0104651****[11]**WEYL, H.,*Uber die Gleichverteilung von Zahlen mod. Eins*. Math. Ann.**77**(1916 ), 313-352.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
11K06,
11B05

Retrieve articles in all journals with MSC (2000): 11K06, 11B05

Additional Information

**Marian Vâjâitu**

Affiliation:
Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, Bucharest 70700, Romania

Email:
mvajaitu@stoilow.imar.ro

**Alexandru Zaharescu**

Affiliation:
Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, Bucharest 70700, Romania – and – Department of Mathematics, University of Illinois at Urbana-Champaign, Altgeld Hall, 1409 W. Green Street, Urbana, Illinois 61801

Email:
zaharesc@math.uiuc.edu

DOI:
http://dx.doi.org/10.1090/S0002-9939-02-06791-6

Received by editor(s):
February 7, 2001

Published electronically:
July 15, 2002

Communicated by:
David E. Rohrlich

Article copyright:
© Copyright 2002
American Mathematical Society