On nonoscillatory solutions of differential inclusions

Authors:
Ravi P. Agarwal, Said R. Grace and Donal O'Regan

Journal:
Proc. Amer. Math. Soc. **131** (2003), 129-140

MSC (2000):
Primary 47H10, 34C10

DOI:
https://doi.org/10.1090/S0002-9939-02-06492-4

Published electronically:
June 3, 2002

MathSciNet review:
1929032

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper introduces a nonoscillatory theory for differential inclusions based on fixed point theory for multivalued maps.

**1.**R.P. Agarwal, S.R. Grace and D. O'Regan, Oscillation theory for second order dynamic equations, Taylor & Francis, to appear.**2.**C.D. Aliprantis and K.C. Border, Infinite dimensional analysis,*Springer Verlag*, 1994. MR**96k:46001****3.**J.P. Aubin and A. Cellina, Differential inclusions,*Springer*, Berlin, 1984. MR**85j:49010****4.**M. Cecchi, M. Marini and P. Zecca, Existence of bounded solutions for multivalued differential systems,*Nonlinear Analysis*,**9**(1985), 775-786. MR**86j:34012****5.**N. Dunford and J. Schwartz, Linear Operators,*Interscience*, New York, 1958. Reprint MR**90g:47001a****6.**L.H. Erbe, Q.K. Kong and B.G. Zhang, Oscillation theory for functional differential equations,*Marcel Dekker*, New York, 1995. MR**96c:34147****7.**P.M. Fitzpatrick and W.V. Petryshyn, Fixed point theorems for multivalued noncompact acyclic mappings,*Pacific Jour. Math*.,**54**(1974), 17-23. MR**53:8973****8.**M. Frigon, Théorèmes d'existence de solutions d'inclusions différentielles,*Topological Methods in Differential Equations and Inclusions*(edited by A. Granas and M. Frigon), NATO ASI Series C,**Vol 472**,*Kluwer Acad. Publ.*, Dordrecht, 1995, 51-87. MR**96m:34025****9.**I. Gyori and G. Ladas, Oscillation theory of delay differential equations with applications,*Clarendon Press*, Oxford, 1991. MR**93m:34109****10.**I.T. Kiguradze, On oscillatory solutions of some ordinary differential equations,*Soviet Math. Dokl*.,**144**(1962), 33-36.**11.**A. Lasota and Z. Opial, An application of the Kututani-Ky Fan theorem in the theory of ordinary differential equations,*Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys*.,**13**(1965), 781-786. MR**33:4370****12.**G.S. Ladde, V. Lakshmikantham and B.G. Zhang, Oscillation theory of differential equations with deviating arguments,*Marcel Dekker*, New York, 1987. MR**90h:34118****13.**Z. Nehari, A nonlinear oscillation problem,*Jour. Differential Eqns*.,**5**(1969), 452-460. MR**38:3514****14.**D. O'Regan, Integral inclusions of upper semi-continuous or lower semi-continuous type.*Proc. Amer. Math. Soc*.,**124**(1996), 2391-2399. MR**96j:47064****15.**Ch.G. Philos and V.A. Staikos, Oscillation and asymptotic behaviour of second and third order retarded differential equations,*Czech. Math. Jour*.,**32**(1982), 169-182. MR**83g:34082****16.**T. Pruszko, Topological degree methods in multivalued boundary value problems,*Nonlinear Analysis*,**5**(1981), 953-973. MR**83d:34034****17.**S.M. Rankin, Oscillation of forced second order nonlinear differential equations,*Proc. Amer. Math. Society*,**59**(1976), 279-282. MR**54:3089****18.**B. Singh, Asymptotic nature of nonoscillatory solutions of order retarded differential equations,*SIAM Jour. Math. Anal*.,**6**(1975), 784-795. MR**55:3479****19.**V.A. Staikos and Ch.G. Philos, On the asymptotic behavior of nonoscillatory solutions of differential equations with deviating arguments,*Hiroshima Math. Journal*,**7**(1977), 9-31. MR**55:8518****20.**R.D. Terry, Some oscillation criteria for delay differential equations of even order,*SIAM Jour. Appl. Math*.,**28**(1975), 319-334. MR**50:13822****21.**J.S.W. Wong, On the second order nonlinear oscillations,*Funkcial. Ekvac*.,**11**(1968), 207-234. MR**39:7221**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
47H10,
34C10

Retrieve articles in all journals with MSC (2000): 47H10, 34C10

Additional Information

**Ravi P. Agarwal**

Affiliation:
Department of Mathematics, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260

Address at time of publication:
Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, Florida 32901-6975

Email:
agarwal@fit.edu

**Said R. Grace**

Affiliation:
Department of Engineering Mathematics, Cairo University, Orman, Giza 12221, Egypt

**Donal O'Regan**

Affiliation:
Department of Mathematics, National University of Ireland, Galway, Ireland

DOI:
https://doi.org/10.1090/S0002-9939-02-06492-4

Keywords:
Differential inclusions,
nonoscillatory,
fixed point theorems

Received by editor(s):
April 4, 2001

Received by editor(s) in revised form:
August 9, 2001

Published electronically:
June 3, 2002

Communicated by:
Carmen C. Chicone

Article copyright:
© Copyright 2002
American Mathematical Society