PSEUDONORMALITY AND STARCOMPACTNESS
OF σ-PRODUCTS

KEIKO CHIBA

(Communicated by Alan Dow)

Abstract. In this paper we shall prove the following: For every non-trivial σ-product σ, of uncountable number of spaces, having at least two points, $\sigma \setminus \sigma_n$ is not pseudonormal. And every non-trivial σ-product is not strongly starcompact.

1. Introduction

Throughout this paper we assume that each space is a T_1-space having at least two points. We recall the definition of σ-products which were introduced by H. H. Corson [3].

Definition 1. Let $S = \{X_\alpha | \alpha \in \Omega\}$ be a family of spaces. “$\sigma = \sigma(S)$ is called a σ-product of S” if there is a point $x^* = (x^*_\alpha)_{\alpha \in \Omega} \in X = \prod \{X_\alpha | \alpha \in \Omega\}$ (called the base point of σ) such that σ is the subspace of X consisting of $x \in X$ such that $Q(x)$ is finite. Here $Q(x) = \{\alpha | x^*_\alpha \neq x_\alpha\}$. Let $[\Omega]^n = \{\alpha \subset \Omega : |\alpha| = n\}$ for each $n \in \omega$ and put $[\Omega]^<\omega = \bigcup([\Omega]^n : n \in \omega)$. Here $|\alpha|$ denotes the cardinal number of α.

$\Sigma = \{x \in X : |Q(x)| \leq \omega\}$ is called a Σ-product of S.

A σ-product σ (resp. Σ-product Σ) is called non-trivial if $\sigma \neq X$ (resp. $\Sigma \neq X$).

Let X be a space and τ be an infinite cardinal number such that $|\Omega| = \tau$. In case $X_\alpha = X$ for each $\alpha \in \Omega$, let us denote $\sigma(S)$ by $\sigma(X^\tau)$. For $a \in X$, we denote by $a^* = (a_\alpha)_{\alpha \in \Omega}$, $a_\alpha = a$ for each $\alpha \in \Omega$.

For a finite subset F of Ω, $\Pi \{X_\alpha | \alpha \in F\}$ is said to be a finite subproduct of σ.

The following fact concerning σ-products is known.

Fact. Let $\sigma = \sigma(S)$ and $\sigma_n = \{x \in \sigma : |Q(x)| \leq n\}$ for each $n \in \omega$. Then σ_n is closed in σ.

In this paper we investigate normality-type properties of special subspaces of σ-products and compactness-type properties of σ-products.

In 1959, Corson [3] proved that for every non-trivial Σ-product Σ, a subspace $\Sigma \setminus \{x\}$ is not normal for every point $x \in \Sigma$. In 1978, A. P. Kombarov [5] proved that if a set Z is closed in the τ-envelope $Y = Y(x^*, \tau) = \{y \in X = \prod \{X_\alpha | \alpha \in \Omega\} : |Q(y)| < \tau\}$ and $|\bigcup \{Q(z) : z \in Z\}| < \tau$, then $Y \setminus Z$ is a non-normal subset.
of Y. As corollaries of this theorem we have non-normality of $\Sigma \setminus \{x\}$, where Σ is a non-trivial Σ-product and $x \in \Sigma$, and non-normality of $\sigma \setminus \{x\}$, where σ is a non-trivial σ-product of uncountable number of spaces and $x \in \sigma$.

A space X is called pseudonormal if any two disjoint closed sets, one of which is countable, are separated by open sets in X. Obviously, any normal space is pseudonormal.

In 1996, Kombarov \cite{9} proved that if Y is a τ-envelope of spaces $X_{\alpha}, \alpha \in \Omega$, $|\Omega| \geq \max\{\omega_1, \tau\}$, then a subspace $Y \setminus \{x\}$ is not pseudonormal for every $x \in Y$. In particular he obtained the following.

Theorem A (Kombarov \cite{9}). Let $\mathcal{S} = \{X_{\alpha}|\alpha \in \Omega\}$ be a family of spaces such that $|\Omega| \geq \omega_1$ and let $\sigma = \sigma(\mathcal{S})$. Then $\sigma \setminus \sigma_0$ is not pseudonormal.

In this paper we shall prove a generalization of Theorem A.

2. Normality and Pseudonormality

Theorem 1. Let $\mathcal{S} = \{X_{\alpha}|\alpha \in \Omega\}$ be a family of spaces such that $|\Omega| \geq \omega_1$ and let $\sigma = \sigma(\mathcal{S})$. Then $\sigma \setminus \sigma_n$ is not pseudonormal for each $n \in \omega$.

Lemma 1. Let $\mathcal{S} = \{X_{\alpha}|\alpha \in \Omega\}$ such that $|\Omega| \geq \omega_1$. Let $\sigma = \sigma(2^{\omega_1})$ be the σ-product with the base point 0^*. Here $2 = \{0, 1\}$ is the discrete space of two points. Then there is a homeomorphism f from σ onto $f(\sigma) \subset \sigma'$ such that $f(0^*) = x^*$ and $f(\sigma \setminus \sigma_n)$ is a closed subset of $\sigma' \setminus \sigma'_n$. Here $\sigma' = \sigma(\mathcal{S})$ with the base point x^*.

Proof. Let us choose a point $a_{\alpha} \in X_{\alpha}$ such that $a_{\alpha} \neq x_{\alpha}^*$ for each $\alpha \in \Omega$. Let us consider $\omega_1 \subset \Omega$. Let $f : \sigma \to \sigma'$ as follows: for each $x = (x_{\alpha})_{\alpha \in \omega_1} \in \sigma$, let $f(x) = (y_{\alpha})_{\alpha \in \Omega}$ be

$$y_{\alpha} = \begin{cases} a_{\alpha} & \text{if } \alpha \in \omega_1 \text{ and } x_{\alpha} = 1, \\ x_{\alpha}^* & \text{otherwise.} \end{cases}$$

Then f has the desired properties. To prove that $f(\sigma \setminus \sigma_n)$ is a closed subset of $\sigma' \setminus \sigma'_n$, let $y \in (\sigma' \setminus \sigma'_n) \cap f(\sigma \setminus \sigma_n)$. Then $Q(y) \cap (\Omega \setminus \omega_1) \neq \emptyset$. Let us choose an element $\alpha \in Q(y) \cap (\Omega \setminus \omega_1)$ and put $U = \{z \in \sigma' \setminus \sigma'_n|z_{\alpha} \neq x_{\alpha}^*\}$. Then U is an open neighborhood of y in $\sigma' \setminus \sigma'_n$ such that $U \cap f(\sigma \setminus \sigma_n) = \emptyset$.

Since pseudonormality is inherited by closed subspaces, Theorem 1 follows from Proposition 1 below by using Lemma 1.

Proposition 1. Let $\sigma = \sigma(2^{\omega_1})$ be the σ-product with the base point 0^*. Then $\sigma \setminus \sigma_n$ is not pseudonormal for each $n \in \omega$.

Proof. We denote $\sigma = \{f : \omega_1 \to 2|Q(f) \text{ is finite}\}$. Here $Q(f) = \{\alpha \in \omega_1|f(\alpha) = 1\}$.

Put $G = \sigma \setminus \sigma_n$. Let us choose a subset $A \subset \omega_1$ such that $|A| = n$. For each $\alpha \in \omega_1$, let us define $f^\alpha : \omega_1 \to 2$ as follows:

$$f^\alpha(\beta) = \begin{cases} 1 & \text{if } \beta \in A \cup \{\alpha\}, \\ 0 & \text{if } \beta \in \omega_1 \setminus (A \cup \{\alpha\}). \end{cases}$$

Then

(1) $f^\alpha \in \sigma_{\alpha+1} \setminus \sigma_n$ for each $\alpha \in \omega_1 \setminus A$.

Let us choose subsets Γ_1 and Γ_2 of ω_1 such that $|\Gamma_1| = \omega_1, |\Gamma_2| = \omega, \Gamma_1 \cap \Gamma_2 = \emptyset, (\Gamma_1 \cup \Gamma_2) \cap A = \emptyset, \omega_1 = \Gamma_1 \cup \Gamma_2 \cup A$. Put $E = \{f^\alpha|\alpha \in \Gamma_1\}$ and $F = \{f^\alpha|\alpha \in \Gamma_2\}$.
Then \(E \cap F = \emptyset, |F| = \omega \) and

(i) \(E \) and \(F \) are closed subsets in \(G \);

(ii) \(E \) and \(F \) are not separated by open sets in \(G \).

Proof of (i). To prove that \(E \) is closed in \(G \), let \(f \in G \setminus E \). If \(|Q(f)| \geq n + 2 \), then \(f \notin \sigma_{n+1} \). Put \(U = G \setminus \sigma_{n+1} \). Then \(U \) is a neighborhood of \(f \) in \(G \) such that \(U \cap E = \emptyset \). If \(|Q(f)| = n + 1 \), then \(Q(f) \setminus A \neq \emptyset \) because \(|A| = n \). Let \(\alpha \in Q(f) \setminus A \). Then \(f(\alpha) = 1 \). If \(|A \cap Q(f)| = n \), then \(\alpha \in \Gamma_2 \) because \(f \notin E \). Put \(U = \{ g \in G | g(\alpha) = 1 \} \). Then \(U \) is a neighborhood of \(f \) in \(G \) such that \(U \cap E = \emptyset \). Therefore it is proved that \(E \) is closed in \(G \). Quite similarly it is proved that \(F \) is closed in \(G \).

Proof of (ii). Let \(U \) be an arbitrary open set in \(G \) such that \(E \subset U \). Then, for each \(\alpha \in \Gamma_1 \), there is a finite set \(r_\alpha \) of \(\omega_1 \) such that \(A \cup \{ \alpha \} \subset r_\alpha \) and \(f^\alpha \in U_{\alpha} \equiv \{ g \in G | g(\beta) = 1 \} \) for each \(\beta \in A \cup \{ \alpha \}, g(\beta) = 0 \) for each \(\beta \in r_\alpha \setminus (A \cup \{ \alpha \}) \} \subset U \). By \(\hat{\alpha} \text{SANIN'S lemma, there are an uncountable set } \Gamma^* \subset \Gamma_1 \text{ and a finite set } r^* \subset \omega_1 \text{ such that } \{ r_\alpha \setminus r^* | \alpha \in \Gamma^* \} \text{ is disjoint. Since } \Gamma_2 \text{ is infinite and } r^* \text{ is finite, } \Gamma_2 \setminus r^* \neq \emptyset \).

Let \(\alpha^* \in \Gamma_2 \setminus r^* \). Then

(2) \(f^{\alpha^*} \in F \cap clU \).

It is obvious that \(f^{\alpha^*} \in F \). Therefore it is sufficient to prove the following.

Claim. \(f^{\alpha^*} \in clU \).

To prove this, let \(V \) be an arbitrary open set in \(G \) such that \(f^{\alpha^*} \in V \). Then there is a finite set \(r \) of \(\omega_1 \) such that \(A \cup \{ \alpha^* \} \subset r \) and \(f^{\alpha^*} \in V \equiv \{ g \in G | g(\beta) = 1 \} \) for each \(\beta \in A \cup \{ \alpha^* \}, g(\beta) = 0 \) for each \(\beta \in r \setminus (A \cup \{ \alpha^* \}) \} \subset V \).

Since \(\Gamma^* \) is uncountable and \(r \) and \(r^* \) are finite, there is an element \(\beta^* \in \Gamma^* \) such that \(r \cap (r^* \setminus \beta^*) = \emptyset \) and \(\beta^* \in r \setminus r^* \). Then it is easy to see that

(3) \(\alpha^* \neq \beta^*, \alpha^*, \beta^* \notin A \).

Define \(g^* : \omega_1 \to 2 \) by

\[
g^*(\alpha) = \begin{cases} 1 & \text{if } \alpha \in A \cup \{ \alpha^*, \beta^* \}, \\ 0 & \text{if } \alpha \in \omega_1 \setminus (A \cup \{ \alpha^*, \beta^* \}). \end{cases}
\]

Then \(g^* \in \sigma_{n+2} \setminus \sigma_{n+1} \) and therefore \(g^* \in G \). Moreover we have

(4) \(g^* \in V' \cap U_{\beta^*} \).

To prove that \(g^* \in V' \), let \(\beta \in r \setminus (A \cup \{ \alpha^* \}) \). Then \(\beta \notin r_{\beta^*} \setminus r^* \). Thus \(\beta \neq \beta^* \).

Hence \(g(\beta) = 0 \). Therefore \(g \in V' \). To prove that \(g^* \in U_{\beta^*} \), let \(\beta \in r_{\beta^*} \setminus (A \cup \{ \beta^* \}) \). If \(\beta \in r^* \), then \(\beta \neq \alpha^* \). Thus \(g(\beta) = 0 \). If \(\beta \notin r^* \), then \(\beta \in r_{\beta^*} \setminus r^* \). Therefore \(\beta \neq \beta^* \).

It is known that there exists a non-normal \(\sigma \)-product such that each finite sub-product is normal (cf. [3]).

Theorem 2. If each \(X_\alpha \in S \) is normal (resp. pseudonormal), then \(\sigma_1 \) is normal (resp. pseudonormal).

Proof. We shall write only the proof of normality because the proof of pseudonormality is quite similar. Let \(A \) and \(B \) be disjoint closed subsets in \(\sigma_1 \). Let \(x^* \in A \).

There are finite sets \(\{ \alpha_i | i = 1, 2, ..., m \} \) of \(\Omega \) and open sets \(U_{\alpha_i} \) in \(X_{\alpha_i} \) such that \(x^* \in W \equiv \{ x \in \sigma_1 | x_{\alpha_i} \in U_{\alpha_i} \text{ for } i = 1, 2, ..., m \} \) and \(clW \cap B = \emptyset \). Since \(X_{\alpha_i} \) is normal, there is an open set \(U'_{\alpha_i} \) in \(X_{\alpha_i} \) such that \(x_{\alpha_i}^* \in U'_{\alpha_i} \) and \(clU'_{\alpha_i} \subset U_{\alpha_i} \), for
Then (Bing’s Example G ([1]))

Let \(Y_\alpha = \{x \in \sigma_1 | x_\beta = x_\beta^* \text{ for each } \beta \neq \alpha \} \), i.e., \(Y_\alpha = X_n \times \{x_\alpha^* \} \). Here

\[z_\alpha^* = (x_\beta^*)_{\beta \in \Omega \setminus \{\alpha\}}. \]

Then it is easy to see that

1. \(Y_\alpha \subset W' \) for each \(\alpha \in \Omega \setminus \{\alpha_i | i = 1, 2, \ldots, m\} \);
2. \(Y_\alpha \) is closed in \(\sigma_1 \).

Put \(A_i = A \cap Y_{\alpha_i} \setminus W' \) and \(B_i = B \cap Y_{\alpha_i} \setminus W' \). Then \(A_i \) and \(B_i \) are disjoint closed sets in \(Y_{\alpha_i} \) and \(x_\alpha^* \notin A_i, x_\alpha^* \notin B_i \). Since \(Y_{\alpha_i} \) is normal, there are open sets \(V_i \) and \(V_i' \) in \(X_{\alpha_i} \) such that \(V_i \cap V_i' = \emptyset, x_\alpha^* \notin V_i \cup V_i', A_i \subset V_i \times \{x_\alpha^* \} \) and \(B_i \subset V_i' \times \{x_\alpha^* \} \). Put \(G_i = \{x \in \sigma_1 | x_{\alpha_i} \in V_i \} \setminus \bigcup \{Y_{\alpha_j} | j \neq i \} \) and \(H_i = \{x \in \sigma_1 | x_{\alpha_i} \in V_i' \setminus \text{cl}U_{\alpha_i}' \} \setminus \bigcup \{Y_{\alpha_j} | j \neq i \} \). Then \(G_i \) and \(H_i \) are open sets in \(\sigma_1 \) such that

3. \(A_i \subset G_i, B_i \subset H_i \);
4. \(G_i \cap H_i = \emptyset \).

Proof of (3). Let \(x \in A_i \cup B_i \). Then \(x_\alpha = x_\alpha^* \) for each \(\alpha \neq \alpha_i \). Since \(x \notin W', x_{\alpha_i} \neq x_{\alpha_i}^* \). Thus \(x \notin Y_{\alpha_i} \) if \(j \neq i \). Hence, if \(x \in A_i \), then \(x \in G_i \). Let \(x \in B_i \). Then \(x_{\alpha_i} \in V_i' \). If \(x_{\alpha_i} \in \text{cl}U_{\alpha_i}' \), then \(x_{\alpha_i} \in U_{\alpha_i} \). Since \(x_{\alpha_i} = x_{\alpha_i}^* \in U_{\alpha_i} \) for each \(j \neq i, x \in W \). Therefore \(x \notin B_i \). This is a contradiction. Thus \(x_{\alpha_i} \notin \text{cl}U_{\alpha_i}' \). Hence \(x \in H_i \).

Put \(G = W' \cup \bigcup_{i=1}^m G_i \) and \(H = \bigcup_{i=1}^m H_i \). Then \(G \) and \(H \) are open sets in \(\sigma_1 \) such that

5. \(A \subset G, B \subset H \)

and

6. \(G \cap H = \emptyset \).

(5) is obvious, (6) follows from (4) and (7) and (8) below.

7. \(W' \cap H_i = \emptyset \) for each \(i \).

8. \(i \neq j \Rightarrow G_i \cap H_j = \emptyset \).

(7) is obvious.

Proof of (8). If \(x \in G_i \cap H_j \), then \(x_{\alpha_i} \neq x_{\alpha_i}^* \) and \(x_{\alpha_i} \neq x_{\alpha_j}^* \). Thus \(|Q(x)| \geq 2 \), which contradicts \(x \in \sigma_1 \).

Example 1. There exists a \(\sigma \)-product such that each finite subproduct is normal and \(\sigma_2 \) is not normal.

To prove Example 1, we shall use the following lemma.

Lemma 2 ([2]). Let \(X \) be a space and \(A \) be a closed set of \(X \) which is not a \(G_\delta \)-subset of \(X \). Let \(F \) be Bing’s Example \(G \) or \(H \) constructed by \(P = X \setminus A \). Then \(X \times F \) is not normal.

Definition 2 (Bing’s Example G ([3])). Let \(P \) be an uncountable set and \(Q = \{q | q \subset P \} \). Put \(F = \{f : Q \rightarrow 2 \} \). For each \(p \in P \), define \(f_p \) as follows:

\[f_p(q) = \begin{cases} 1 & \text{if } p \in q, \\ 0 & \text{if } p \notin q. \end{cases} \]

Put \(F_P = \{f_p | p \in P \} \). Define the topology of \(F \) as follows: each \(f_p \) has a neighborhood base in Cartesian product topology and for each \(f \in F \setminus F_P, \{f \} \) is open. For each \(r \in R = Q^{<\omega} \), put \(V(f_p; r) = \{f \in F | f(q) = f_p(q) \} \) for each \(q \in r \).

Then \(\mathcal{V}(f_p) = \{V(f_p; r) | r \in R \} \) is a neighborhood base of \(f_p \).
Proof of Lemma 2. In case F is Bing’s Example H, the proof is in [2]. The proof is quite similar for the case of Bing’s Example G. But, since [2] is not widely known, we shall sketch the proof of the case of Bing’s Example G. Let $C = A \times F$ and $D = \{ (p, f_p) | p \in P \}$. Then C and D are disjoint closed subsets in $X \times F$ and are not separated by open sets in $X \times F$. To show this, let O be an arbitrary open set in $X \times F$ such that $D \subset O$. For each $p \in P$, there is a member $V(f_p; r_p) \subset V(f_p)$ such that $\bigcup_{p \in P} \{ p \} \times V(f_p; r_p) \subset O$. Let us put $P_i = \{ p | p \in P, r_p = i \}$ for each $i < \omega$. Since A is not a G_δ-set of X, there is an i such that $A \cap cl(P_i) \neq \emptyset$. Let us fix this i. Let $x_0 \in A \cap cl(P_i)$. Let us put $P_i(r) = \{ p \in P_i | r_p \supset r \}$ for each $r \in R$. Then we can prove that there exists an element $r^* \in R$ satisfying the following conditions: (1) $x_0 \notin cl(P_i(r^*))$, (2) $x_0 \notin cl(P_i(r^* \cup \{ q \})$ for each $q \in Q \setminus r^*$. Let us put $R^* = \{ s | s \subset r^* \}$. For each $s \in R^*$, we define an element q_s of Q by $q_s = \bigcap \{ q | q \in s \} \setminus \bigcup \{ q | q \in r^* \setminus s \}$. Then $\{ q_s | s \in R^* \}$ is a finite cover of P. Therefore, we can choose a member s_0 of R^* such that $x_0 \in cl(P_i(r^*) \cap q_{s_0})$. For this s_0, we choose an element $p^* \in q_{s_0}$. Then $\langle x_0, f_{p^*} \rangle \in C$. Next we shall prove that $\langle x_0, f_{p^*} \rangle \in cl(O)$. Let U be an arbitrary open neighborhood of x_0 in $X \times V(f_{p^*}; r)$ be an arbitrary member of $V(f_{p^*})$. Then we can choose an open neighborhood U' of x_0 in X such that $U' \cap \bigcup \{ P_i(r^*) \cup \{ q \} | q \in r \setminus r^* \} = \emptyset$. Then $U \cap U' \cap P_i(r^*) \cap q_{s_0} \neq \emptyset$. Let $p \in U \cap U' \cap P_i(r^*) \cap q_{s_0}$. Then $r_{p^*} \cup (r \setminus r^*) = \emptyset$. Define $f : Q \rightarrow 2$ by

$$f(q) = \begin{cases} 1 & \text{if } p^* \in q \in r \text{ or } p \in q \in r_{p^*}, \\ 0 & \text{otherwise.} \end{cases}$$

Then $f \in V(f_{p^*}; r) \cap V(f_{p^*}; r_p)$. Therefore $(U \times V(f_{p^*}; r)) \cap (\{ p \} \times V(f_{p^*}; r_p)) \neq \emptyset$.

Proof of Example 1. Let $\sigma = \sigma(2^{\omega_1})$ be the σ-product with the base point 0^*. Then

(i) 0^* is not a G_δ-set in σ_1.

Proof. Assume that there exist countable open sets $\{ W_n | n = 1, 2, \ldots \}$ in σ_1 such that $\{ 0^* \} = \bigcap_{n < \omega} W_n$. Then there are finite sets $a_n \subset \omega_1$ and open sets U_n, n in X_n for each $n \in a_n$ such that $0^* \in U_n \equiv \{ x \in \sigma_1 | x_{\alpha} = 0 \text{ for each } \alpha \in a_n \} \subset W_n$ for each n. Then $\{ 0^* \} = \bigcap_{n < \omega} U_n$. Since $\omega_1 \setminus \bigcup_{n < \omega} a_n \neq \emptyset$, choose an element $\alpha \in \omega_1 \setminus \bigcup_{n < \omega} a_n$. Let us define $x = (x_{\beta})_{\beta < \omega_1}$ by $x_\alpha = 1, x_\beta = 0$ if $\beta \neq \alpha$. Then $x \in \bigcap_{n < \omega} U_n \cap \{ 0^* \}$, which contradicts $\{ 0^* \} = \bigcap_{n < \omega} U_n$.

(ii) Put $P = \sigma_1 \setminus \{ 0^* \}$ and let F be Bing’s Example G constructed by P. Then $\sigma_1 \times F$ is not normal.

Let $S = \{ 2_{\alpha} | \alpha < \omega_1 \} \cup \{ F \}$ where $2_{\alpha} = 2$ for each α and let $\sigma' = \sigma(S)$ with the base point $\{ 0^*, f^* \}, f^* \in F \setminus F^p$. Then

(iii) σ'_1 is not normal.

Since normality is inherited by closed subspaces, (iii) follows from (ii) and (iv) below.

(iv) $\sigma_1 \times F$ is a closed subset of σ'_2.

Proof. It is obvious that $\sigma_1 \times F \subset \sigma'_2$. Let $y = (x, f), x \in \sigma_2 \setminus \sigma_1 \times F$. Then we can denote $y = (x, f), x \in \sigma_2 \setminus \sigma_1 \times F$. Since $(x, f) \notin \sigma_1 \times F, x \notin \sigma_1$. Thus $x \in \sigma_2 \setminus \sigma_1$. Hence $f = f^*$. Since $(\sigma_2 \setminus \sigma_1) \times \{ f^* \}$ is an open set in $(\sigma_2 \setminus \sigma_1) \times F$, $((\sigma_2 \setminus \sigma_1) \times \{ f^* \}) = ((\sigma_2 \setminus \sigma_1) \times F) \cap \sigma'_2$ and $(\sigma_2 \setminus \sigma_1) \times \{ f^* \}$ is an open neighborhood of y in σ'_2 such that $((\sigma_2 \setminus \sigma_1) \times \{ f^* \}) \cap (\sigma_1 \times F) = \emptyset$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
3. Starcompactness

It is well known that every non-trivial σ-product is not countably compact. A space X is called countably compact if every countable open cover of X has a finite subcover, or, which is equivalent, every infinite subset has a limit point. A space X is called strongly starcompact if for every open cover U there exists a finite set B of X such that $st(B, U) = X$. Here $st(B, U) = \bigcup \{ U \in U | U \cap B \neq \emptyset \}$. A space X is called starcompact if for every open cover U there exists a finite subfamily U' of U such that $st(U', U) = X$.

It is known that countably compact \Rightarrow strongly star compact \Rightarrow starcompact, and for T_2-spaces, the converses hold.

Theorem 3. Every non-trivial σ-product is not strongly star compact.

Proof. Let $\mathcal{S} = \{ X_\alpha | \alpha \in \Omega \}$ be a family of spaces such that $|\Omega| \geq \omega$. Let $\sigma = \sigma(2^\omega)$ be the σ-product with the base point 0^* and let $\sigma' = \sigma(\mathcal{S})$. Let us choose a point $a_\alpha \in X_\alpha$ such that $a_\alpha \neq x^*_\alpha$ for each $\alpha \in \Omega$. Let us consider $\omega \subset \Omega$. Define $f: \sigma \to \sigma'$ as follows: for each $x = (x_\alpha)_{\alpha \in \omega} \in \sigma$, let $f(x) = (y_\alpha)_{\alpha \in \omega}$ be

$$y_\alpha = \begin{cases} a_\alpha & \text{if } \alpha \in \omega \text{ and } x_\alpha = 1, \\ x^*_\alpha & \text{otherwise.} \end{cases}$$

Then f is a homeomorphism from σ onto $f(\sigma)$ such that $f(0^*) = x^*$ and $f(\sigma)$ is a closed subset of σ'. To prove that $f(\sigma)$ is a closed subset of σ', let $y \in \sigma' \setminus f(\sigma)$. Then there exists $\alpha \in \Omega \setminus \omega$ such that $y_\alpha \neq x^*_\alpha$ and put $U = \{ z \in \sigma' | z_\alpha \neq x^*_\alpha \}$. Then U is an open neighborhood of y in σ' such that $U \cap f(\sigma) = \emptyset$.

Claim. σ' is not strongly starcompact.

Proof. Let $U_0 = \{ x \in \sigma' | x_0 \neq a_0 \}$ and let $U_n = \{ x \in \sigma' | x_0 \neq x^*_0, x_1 \neq x^*_1, \ldots, x_{n-1} \neq x^*_n, x_n \neq a_n \}$ for each $n \geq 1$. Put $\mathcal{U} = \{ U_n | n \in \omega \} \cup \{ \sigma' \setminus f(\sigma) \}$. Then

(i) \mathcal{U} is an open cover of σ';

(ii) there is no finite $B \subset \sigma'$ such that $st(B, \mathcal{U}) = \sigma'$.

Proof of (ii) is easy and so we omit it.

Proof of (ii). Let B be a finite set of σ'. Then $B \subset \sigma'_n$ for some n. Since $U_i \cap \sigma'_i = \emptyset$ for each $i \geq n + 1$, $st(B, \mathcal{U}) \subset \bigcup_{i \leq n} U_i \cup (\sigma' \setminus f(\sigma))$. However $\bigcup_{i \leq n} U_i \cup (\sigma' \setminus f(\sigma)) \neq \sigma'$. To show this, let us define $z = (z_\alpha)_{\alpha \in \Omega}$ as follows:

$$z_\alpha = \begin{cases} a_\alpha & \text{if } \alpha \in \omega \text{ and } \alpha \leq n, \\ x^*_\alpha & \text{otherwise.} \end{cases}$$

Then $z \in \sigma'$ and $z \notin \bigcup_{i \leq n} U_i \cup (\sigma' \setminus f(\sigma))$. Therefore $st(B, \mathcal{U}) \neq \sigma'$.

Theorem 4. If each $X_\alpha \in \mathcal{S}$ is strongly starcompact (resp. starcompact), then σ_1 is strongly starcompact (resp. starcompact).

Proofs are easy and so we omit them.

Since for T_2-spaces, starcompactness is equivalent to countable compactness, every non-trivial σ-product of T_2-spaces is not starcompact. However, for T_1-spaces, non-trivial σ-product can be starcompact.

We denote $\sigma(X^*)$ with the base point x^* by $\sigma(X^*; x^*)$.

Example 2. There exists a starcompact space X such that X is not a T_2-space and not countably compact and (1) $\sigma = \sigma(X^*; a^*)$ is starcompact for some $a \in X$. (2) $\sigma' = \sigma(X^*; b^*)$ is not starcompact for some $b \in X$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof. Let $X = \mathbb{R}$ with the topology as follows: let $U(0) = \{U|0 \in U, |X \setminus U| \leq \omega\}$ be the neighborhoods of 0 in X and for each $x \neq 0$, $U(x) = \{U|U$ is a neighborhood of x in usual topology of $\mathbb{R}\}$ be the base of x in X. Then X is a T_1-space and not a T_2-space and X is starcompact and not countably compact. By Theorem 5 below, (1) $\sigma = \sigma(X^\omega;0^*)$ is starcompact. By Theorem 6, (2) $\sigma' = \sigma(X^\omega;1^*)$ is not starcompact.

Theorem 5. Let X satisfy the condition: “there exists $a \in X$ such that if U and V are open sets in X and $a \in U$, then $U \cap V \neq \emptyset$”. Let τ be an infinite cardinal number, and $\sigma = \sigma(X^\tau;a^*)$. Then (i) σ is starcompact, (ii) σ_n is starcompact ($\forall n$), (iii) $X^* \sigma$ is starcompact. Moreover let $\sigma' = \sigma(X^\omega;b^*)$, $b \in X$, $b \neq a$. Then (iv) σ'_n is starcompact ($\forall n$).

Proof. Proof of (i). Let \mathcal{G} be an arbitrary open cover of σ. Let us choose $G_0 \in \mathcal{G}$ such that $a^* \in G_0$. There are a finite set \{\alpha_i|i = 1,2,...,m\} $\in \mathcal{T}$ and open sets U_{α_i} in X_{α_i} such that $a^* \in W_0 \equiv \{x \in \sigma| x_{\alpha_i} \in U_{\alpha_i} \text{ for } i = 1,2,...,m\} \subset G_0$. For each $x \in \sigma \setminus W_0$, let us choose $G_x \in \mathcal{G}$ such that $x \in G_x$. Then there are a finite set \{\beta_j|j = 1,2,...,k\} and open sets V_{α_i} in X_{α_i} and V_j in X_{β_j} such that $x \in W_x \equiv \{y \in \sigma| y_{\alpha_i} \in V_{\alpha_i} \text{ for } i = 1,2,...,m; y_{\beta_j} \in V_j \text{ for } j = 1,2,...,k\} \subset G_2$. Since $a \in U_{\alpha_i}, U_n \cap V_{\alpha_i} \neq \emptyset$ for each $i = 1,2,...,m$. Thus $W_0 \cap W_x \neq \emptyset$ and so $G_0 \cap G_x \neq \emptyset$. Therefore $s\tau(G_0,\mathcal{G}) = \sigma$.

Proofs of (ii) and (iii) are similar.

Proof of (iv). First we define \mathcal{B}, y^* as follows: put $\mathcal{B} = \{W|W$ is a basic open set in $\sigma^\prime\}$. Here $W \subset \sigma'$ is called a basic open set in σ' if $W = \{x \in \sigma'| x_i \in U_i \text{ for each } i \leq n\}, n \in \omega, U_i$ is an open set in X_i for each $i \leq n$. Define $l(W) = n$. For each $s \in [\omega]^\omega\setminus$, define $y^* = (y^*_i)_{i \in \omega}$ as follows:

\[
y^*_i = \begin{cases}
 a & \text{if } i \in s, \\
 b & \text{if } i \notin s.
\end{cases}
\]

To prove (iv), let \mathcal{G} be an arbitrary open cover of σ'. Let us prove that there exists a finite subfamily \mathcal{G}_n of \mathcal{G} such that $s\tau(\bigcup \mathcal{G}_n, \mathcal{G}) \supset \sigma'_n$ for each $n \in \omega$.

(I) Let us choose an element $G_0 \in \mathcal{G}$ such that $b^* \in G_0$. Then there is a set $W_0 \in \mathcal{B}$ such that

(0-1) $b^* \in W_0 \subset G_0$.

Put $l(W_0) = k_0$. Then

(0-2) For each $x \in \sigma'$, if $l > k_0$ for each $l \in Q(x)$, then $x \in W_0$.

(II) For each $n = 1,2,...$, inductively we can choose k_n, S_n and W_n satisfying the conditions:

(1) $k_n \in \omega, k_n < k_{n+1} (\forall n \geq 1), k_0 = k_1$.

(2) $S_n \subset S_{n+1}(\forall n \geq 1)$.

(3) \((n - 1) S_n = \{s|s \subset \omega, 1 \leq |s| \leq n, l \leq k_n (\forall l \in s)\}.

(4) \((n - 2) W_n = \{W_s|s \subset S_n\} \cup \{W_0\} \subset \mathcal{B}. W_n$ is a partial refinement of $\mathcal{G}.

(5) \((n - 3) y^* = W_s (\forall s \in S_n), k_n < l(W_s) \leq k_{n+1} (\forall s \in S_n).

(6) \((n - 4) s\tau(\bigcup \mathcal{W}_n, \mathcal{G}) \supset \sigma'_n$.\)

Assume that k_n, S_n and W_n have been chosen for each $n \leq m$. Define $k_{m+1} = \max\{l(W_s)|s \subset S_m\}$ and $S_{m+1} = \{s|s \subset \omega, 1 \leq |s| \leq m + 1, l \leq k_{m+1} (\forall l \in s)\}.

For each $s \in S_{m+1} \setminus S_m$, choose $G_s \in \mathcal{G}$ and $W_s \in \mathcal{B}$ such that $y^* \in W_s \subset G_s$. Put $W_{m+1} = \{W_s|s \in S_{m+1}\} \cup \{W_0\}$. Then k_{m+1}, S_{m+1} and W_{m+1} satisfy the conditions. We only prove $(m + 1 - 4)$ because others are obvious.
Theorem 6. There are a countable closed subset of A of X and a pairwise disjoint open family $\mathcal{U} = \{U(a)|a \in A\}$ such that $a \in U(a)$ for each $a \in A$ and $X \setminus A \neq \emptyset$. Let $\sigma = \sigma(X^\omega; a^*)$, $a \in A$. Then σ is not starcompact.

Proof. Let $A = \{a_n|n = 1, 2, ...,\}, U(a_n) = U_n$ for each n and put $U_0 = X \setminus A$. Then $\bigcup_{n \in \omega} U_n = X$. Without loss of generality we may assume that $a = a_1$. For each $k = 1, 2, ..., \Lambda_k \equiv \{(l_0,l_1,...,l_{k-1},1) \in [\omega]^{k+1}|l_0 \neq 1, l_{k-1} \neq 1\}$ and put $\Lambda = \bigcup_{1 \leq k} \Lambda_k$.

Define $G_1 \equiv \{x \in \sigma|x_0 \in U_1\}$ and $G_\lambda \equiv \{x \in \sigma|x_i \in U_i\}$ for $i = 0, 1, ..., k-1; x_k \in U_1\}$ for each $\lambda = (l_0,l_1,...,l_{k-1},1) \in \Lambda$ and put $\mathcal{G} = \{G_\lambda|\lambda \in \Lambda\} \cup \{G_1\}$. Then

(1) \mathcal{G} is an open cover of σ.

(2) For any finite subfamily \mathcal{G}' of \mathcal{G}, $st(\bigcup \mathcal{G}', \mathcal{G}) \neq \sigma$.

Proof of (1). Let $x \in \sigma$. If $x_0 \notin U_1$, then $x_0 \in U_i$ for some $i \neq 1$. Since $|Q(x) = \{|i|x_i \neq a_1\}| < \omega$, there is a k such that $x_i = a_1$ for each $i \geq k$ and $x_{k-1} \neq a_1$. Then $x \in G_\lambda$ for some $\lambda \in \Lambda$.

Proof of (2). Let \mathcal{G}' be an arbitrary finite subfamily of \mathcal{G}. Then there exists $k > 1$ such that

(2-1) $G_\lambda \notin \mathcal{G}'$ for each $\lambda \in \bigcup_{m > k} \Lambda_m$.

Define $x = (x_i)_{i \in \omega}$ as follows:

$$x_i = \begin{cases} a_k & \text{if } i \leq k, \\ a_1 & \text{if } i > k. \end{cases}$$

Then

(2-2) $x \notin st(\bigcup \mathcal{G}', \mathcal{G})$.

Proof of (2-2). Let $x \in G \in \mathcal{G}$. Then $G \neq G_1$. Therefore $G = G_\lambda$ with $\lambda = (l_0,l_1,...,l_{m-1},1) \in \Lambda_m$. Then $m > k$. To show this, assume that $m \leq k$. Then $x_m = a_k$ by the definition of x. Since $a_k \notin U_1$, $x \notin G_\lambda$, which is a contradiction. Therefore $m > k$. It is easy to see that $l_i = k$ for each $i \leq k$ and $l_i = 1$ for each $i \geq k + 1$. Thus $l_0 \geq 2$ and so $U_{l_0} \cap U_1 = \emptyset$. Hence $G_\lambda \cap G_1 = \emptyset$. If $m \geq k + 2$, then $l_{m-1} = 1$. This contradicts the definition of λ. Thus $m = k + 1$. Let $G_n \in \mathcal{G}'$ with $n = (s_0,s_1,...,s_{k-1},1) \in \Lambda_k$. Then $t \leq k$. Therefore $l_t = k$. Since $U_k \cap U_1 = \emptyset$, $G_\lambda \cap G_n = \emptyset$.

Remark. For σ and σ' in Example 2, σ_n and σ'_n are starcompact for each n by Theorems 5 and 6.
ACKNOWLEDGEMENT

The author is grateful to the referee for his helpful comments.

REFERENCES

2. K. Chiba, Two remarks on the normality of product spaces, Reports of Faculty of Science, Shizuoka University, 11 (1976), 17 - 22. MR 56:1257

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, SHIZUOKA UNIVERSITY, OHYA, SHIZUOKA, 422-8529 JAPAN
E-mail address: smktiba@ipc.shizuoka.ac.jp