A BLOCK THEORETIC ANALOGUE
OF A THEOREM OF GLAUBERMAN AND THOMPSON

RADHA KESSAR AND MARKUS LINCKELMANN

(Communicated by Stephen D. Smith)

Abstract. If \(p \) is an odd prime, \(G \) a finite group and \(P \) a Sylow-\(p \)-subgroup of \(G \), a theorem of Glauberman and Thompson states that \(G \) is \(p \)-nilpotent if and only if \(N_G(Z(J(P)))) \) is \(p \)-nilpotent, where \(J(P) \) is the Thompson subgroup of \(P \) generated by all abelian subgroups of \(P \) of maximal order. Following a suggestion of G. R. Robinson, we prove a block-theoretic analogue of this theorem.

\textbf{Theorem.} Let \(p \) be an odd prime and let \(k \) be an algebraically closed field of characteristic \(p \). Let \(G \) be a finite group, \(b \) a block of \(kG \), and \(P \) a defect group of \(b \). Set \(N = N_G(Z(J(P)))) \) and let \(c \) be the unique block of \(kN \) such that \(\text{Br}_P(c) = \text{Br}_P(b) \); that is, \(c \) is the Brauer correspondent of \(b \). Then \(kGb \) is nilpotent if and only if \(kNc \) is nilpotent.

We refer to \cite{5} and \cite{7} for accounts on the terminology from group theory and block theory, respectively, involved in the theorem above and its proof. Nilpotent blocks, introduced by Broué and Puig in \cite{3}, are the block theoretic analogue of the notion of \(p \)-nilpotent groups; the principal block of \(kG \) is nilpotent if and only if \(G \) is \(p \)-nilpotent. Thus, in this case, our theorem is equivalent to the theorem of Glauberman and Thompson. The proof proceeds in two steps. We reduce to the case where \(G \) is the normaliser of a \(b \)-centric Brauer pair (following the lines of the proof of \cite[Ch. 8, Theorem 3.1]{5}), and then we apply results of Kulshammer and Puig in \cite{6} to transport the problem back to the analogous group theoretic statement.

\textbf{Proof.} We fix a block \(e_P \) of \(kC_G(P) \) such that \(\text{Br}_P(b)e_P = e_P \); that is, \((P, e_P) \) is a maximal \(b \)-Brauer pair. By \cite{1}, for any subgroup \(Q \) of \(P \) there is a unique block \(e_Q \) of \(kC_G(Q) \) such that \((Q, e_Q) \subseteq (P, e_P) \). Denote by \(\mathcal{F}_{G,b} \), the category whose objects are the subgroups of \(P \) and whose set of morphisms from a subgroup \(Q \) of \(P \) to another subgroup \(R \) of \(P \) is the set of group homomorphisms \(\varphi : Q \rightarrow R \) for which there exists an element \(x \in G \) satisfying \(\varphi(u) = xux^{-1} \) for all \(u \in Q \) and \(x(Q,e_Q) \subseteq (R,e_R) \). Thus the automorphism group of a subgroup \(Q \) of \(P \) as an object of the category \(\mathcal{F}_{G,b} \) is canonically isomorphic to \(N_G(Q,e_Q)/C_G(Q) \). By Alperin’s fusion theorem, the category \(\mathcal{F}_{G,b} \) is completely determined by the structure of \(P \) and the groups \(N_G(Q,e_Q)/C_G(Q) \) where either \(Q = P \) or \((Q,e_Q) \) is

\section*{Acknowledgment}

Received by the editors June 14, 2001 and, in revised form, August 15, 2001.

2000 \textit{Mathematics Subject Classification.} Primary 20C20.

\(\copyright \) 2002 American Mathematical Society
an essential b-Brauer pair (cf. [4, §48]). Note that $O_p(G) \subseteq Q$ whenever the pair (Q, e_Q) is essential.

By Brauer’s third main theorem (cf. [4, (40.17)]), if b is the principal block of kG, then e_Q is the principal block of $kC_G(Q)$, for any subgroup Q of P. Thus the above condition $\bar{z}(Q, e_Q) \subseteq (R, e_R)$ is equivalent to $\bar{z}Q \subseteq R$. Therefore, if b is the principal block of kG, we write \mathcal{F}_G instead of $\mathcal{F}_{G,b}$.

In general, the definition of $\mathcal{F}_{G,b}$ depends on the choice of a maximal b-Brauer pair, but since all maximal b-Brauer pairs are G-conjugate, it is easy to see that $\mathcal{F}_{G,b}$ is unique up to isomorphism of categories. Note that we always have $\mathcal{F}_P \subseteq \mathcal{F}_{G,b}$.

Following [3], the block b is called nilpotent if $\mathcal{F}_P = \mathcal{F}_{G,b}$.

If H is any subgroup of G containing $PC_G(P)$, the block e_P determines a unique block d of kH by $\operatorname{Br}_P(d)e_P = e_P$. Then (P, e_P) is also a maximal d-Brauer pair, and this gives rise to the Brauer category $\mathcal{F}_{H,d}$ of kHd, defined as above for H and d instead of G and b.

We are going to frequently use the following fact:

1. If Q is a normal subgroup of P and H a subgroup of G such that $PC_G(Q) \subseteq H \subseteq N_G(Q)$, then
$$\mathcal{F}_{H,d} \subseteq \mathcal{F}_{G,b},$$
where d is the unique block of kH such that $\operatorname{Br}_P(d)e_P = e_P$. In particular, if kGb is nilpotent, then kHd is nilpotent.

Proof. If (R, f_R) is an essential d-Brauer pair contained in (P, e_P), then R contains Q as Q is normal in H. But then $C_G(R) = C_H(R)$, and hence $f_R = e_R$. Thus $N_H(R, f_R)/C_H(R)$ is a subgroup of $N_G(R, e_R)/C_G(R)$. \hfill \Box

Statement 1 applies to N, c and $Z(J(P))$ instead of H, d, Q, respectively. Thus if kGb is nilpotent, so is kNc. In order to show the converse, we consider now a minimal counterexample; that is, we assume that kGb is not nilpotent while kNc is nilpotent and that $|G|$ is minimal with this property. Under this assumption, 1 implies the following statement:

2. If Q is a normal subgroup of P and H a subgroup of G such that $PC_G(Q) \subseteq H \subseteq N_G(Q)$, then either $H = G$ or kHd is nilpotent, where d is the unique block of kH such that $\operatorname{Br}_P(d)e_P = e_P$.

Proof. Let e be the unique block of $N \cap H$ such that $\operatorname{Br}_P(e)e_P = e_P$. We have $PC_N(Q) \subseteq N \cap H \subseteq N_G(Q)$, and thus statement 1 implies that $\mathcal{F}_{N \cap H,e} \subseteq \mathcal{F}_{N,e}$. But then $k(N \cap H)e$ is nilpotent, as kNc is also. Therefore, if H is a proper subgroup of G, then the induction hypothesis implies that the block kHd is nilpotent. \hfill \Box

3. We have $O_p(G) \neq \{1\}$.

Proof. Since the block b of kG is not nilpotent, there exists a b-Brauer pair (Q, e_Q) with $Q \neq 1$ such that $kN_G(Q, e_Q)c_Q$ is not nilpotent. This is because for some nontrivial Brauer pair (Q, e_Q), $N_G(Q, e_Q)/QCG(Q)$ is not a p-group. Amongst all such b-Brauer pairs, choose (Q, e_Q) such that a defect group R of $kN_G(Q, e_Q)c_Q$ has maximal order. After replacing, if necessary, (Q, e_Q) by a suitable G-conjugate, we may assume that $R = N_P(Q)$. We are going to show that $R = P$, or equivalently that $P \subseteq N_G(Q, e_Q)$. We assume that R is a proper subgroup of P, and derive
a contradiction. Set $H = N_G(Q, e_Q)$. Clearly $R \subseteq H$. Since $Q \subseteq R$, we have $C_G(R) \subseteq C_G(Q) \subseteq H$. Now $(Q, e_Q) \subseteq (R, e_R)$, and Q is normal in R, hence e_Q is the unique block of $kC_G(Q)$ which is R-stable and for which $Br_R(e_Q)e_R = e_R$ (cf. [1]).

Set $M = N_G(Z(J(R)))$. Since $C_G(R)$ centralises Q and centralises $Z(J(R))$, we have $C_G(R) \subseteq M \cap H$. Let d be the unique block of $k(M \cap H)$ (having R as defect group) such that $Br_R(d)e_R = e_R$. Let f be the unique block of kM (having R as defect group) such that $Br_R(f)e_R = e_R$. Since $Z(J(R))$ is a normal p-subgroup of M, f is a central idempotent of $kC_G(Z(J(R)))$ (cf. [1]). Thus there exists a block f_0 of $C_G(Z(J(R)))$ such that $f_0 = f$ and $(Z(J(R)), f_0) \subseteq (R, e_R)$ in M, and hence in G. Since $(R, e_R) \subseteq (P, e_P)$, by the uniqueness of inclusion of Brauer pairs, we must have $f_0 = e_{Z(J(R))}$. Let M' be the stabiliser of $e_{Z(J(R))}$ in M. Then $N_P(Z(J(R)))$, and hence $N_P(R)$ is contained in a defect group of $kM'e_{Z(J(R))}$. In particular, the defect groups of $kM'e_{Z(J(R))}$ have order strictly greater than $|R|$. By the maximality of $|R|$, we have that $kM'e_{Z(J(R))}$ is nilpotent. Since kMf is the induced algebra $Ind^M_{M'}(kM'e_{Z(J(R))})$, it follows that kMf is nilpotent. Now $RC_G(Q) \subseteq M \cap H \subseteq N_M(Q)$, and by statement 1 again, it follows that $k(M \cap H)d$ is nilpotent. By the minimality of $|G|$, and the fact that kHe_Q is not nilpotent, it follows that $H = G$ and hence $R = P$, contradicting the assumption $R \neq P$. If $R = P$, then H satisfies the hypothesis of 2 with $d = e_Q$, and kHe_Q is not nilpotent, thus $G = H$. In particular, $Q \subseteq O_p(G) \neq 1$.

From now on set $Q = O_p(G)$.

4. We have $G = N_G(Q, e_Q)$ and $b = e_Q$.

Proof. Since $G = N_G(Q)$, the block b is contained in $kC_G(Q)$ (cf. [1]) and hence $b = Tr^{G}_{C_G(Q, e_Q)}(e_Q)$. Thus $kb \cong Ind^{G}_{C_G(Q, e_Q)}(kN_G(Q, e_Q)e_Q)$, so that in particular, $kN_G(Q, e_Q)e_Q$ is not nilpotent. Since P is contained in $N_G(Q, e_Q)$, it follows from 2 that $G = N_G(Q, e_Q)$ and hence $b = e_Q$.

Note that b is a block of any subgroup of G containing $C_G(Q)$. We want to show that actually the pair (Q, b) is b-centric (or self-centralising in the terminology of Puig, cf. [7] §41); that is, the block $kC_G(Q)b$ is nilpotent with $Z(Q)$ as defect group. This notion goes back to Brauer [2]. We need the following technical statement.

5. Let H be a subgroup of G containing P and let d be a block of kH having P as defect group. Put $H = H/Q$ and for any element a of kH let a denote the image of a under the canonical surjection of kH onto kH. Then $Br_H(d) = Br_H(d')$.

Proof. Since Q is normal in H, the block idempotent d is a k-linear combination over the set $C_H(Q)_{p'}$ of p'-elements in $C_H(Q)$. Write $d = \sum_{g \in C_H(Q)_{p'}} \alpha_g g$ with coefficients $\alpha_g \in k$. So $d = \sum_{g \in C_H(Q)_{p'}} \alpha_g \bar{g}$ and $Br_H(d) = \sum_{g \in C_H(Q)_{p'}} \alpha_g \bar{g}$, where $C_H(P)$ denotes the inverse image in H of $C_H(\bar{P})$.

We claim that $C_H(Q)_{p'} \cap C_H(P) = C_H(P)_{p'}$. To see this, consider the action of an element $g \in C_H(Q)_{p'} \cap C_H(P)$ on an element u of P. Since g normalises P and centralises P/Q, $g(u) = uv$ for some v in Q. Let n be the order of g. Since g centralises Q, it follows that $u = g^n(u) = uv^n$. But p and n are relatively prime, hence $v = 1$, thereby proving the claim.

The statement is immediate from the above expression for \bar{d}.

6. The blocks $kPC_G(Q)b$ and $kC_G(Q)b$ are nilpotent.

Proof. By a result of Cabanes [4], normal p-extensions of nilpotent blocks are nilpotent; thus $kPC_G(Q)b$ is nilpotent if and only if $kC_G(Q)b$ is nilpotent. If $PC_G(Q)$ is a proper subgroup of G, then, by 2, b is nilpotent as a block of $PC_G(Q)$, and hence of $C_G(Q)$. Thus we may assume that $G = PC_G(Q)$. We have to show that kGb is a nilpotent block. Set $\bar{G} = G/Q$ and let \bar{b} denote the image of b under the canonical surjection of kG onto $k\bar{G}$. Identify $C_G(Q)/Z(Q)$ with its canonical image in G; this is a normal subgroup of \bar{G} of index a p-power. Since b is a k-linear combination of p'-elements in $C_G(Q)$ and $Z(Q) = Q \cap C_G(Q)$ is central in $C_G(Q)$, it is clear that \bar{b} is a block of $kC_G(Q)/Z(Q)$ and hence of $k\bar{G}$. Furthermore, \bar{P} is a defect group of $k\bar{G}$. Let Z be the inverse image in G of $Z(J(\bar{P}))$ and set $H = N_G(Z)$. Then H is the inverse image in G of the group $\bar{H} = kN_G(Z(J(\bar{P})))$. Let f be the block of kH which corresponds to the block \bar{b} of $k\bar{G}$; that is, $Br_P(\bar{b}) = Br_P(f)$. Clearly, P and $C_G(Z)$ are both subgroups of H. Since Z properly contains Q and $Q = O_p(G)$, H is a proper subgroup of G. Thus by 2, the block kHd is nilpotent where d is the block of kH satisfying $Br_P(d)e_P = e_P$. Since $N_G(P)$ is contained in H, we have in fact that $Br_P(d) = Br_P(b)$.

Now, it follows from 5 that

$$Br_P(\bar{d}) = Br_P(d) = Br_P(b) = Br_P(\bar{b}) = Br_P(f).$$

In particular, $df \neq 0$. Since kHd is nilpotent, this means that $f = d$ and hence that kHf is nilpotent. As G is a minimal counterexample to the Theorem, it follows that $k\bar{G}b$ is nilpotent, which implies that kGb is nilpotent. □

7. The group Q is a defect group of $kQG_C(Q)b$.

Proof. Let R be a defect group of $kQG_C(Q)b$. We may assume that $R = QC_P(Q)$. The pair (R, e_R) is a maximal Brauer pair for the block $kQG_C(Q)b$, and hence, by the Frattini argument,

Suppose, if possible, that Q is a proper subgroup of R. Then, $N_G(R, e_R)$ is a proper subgroup of G because $Q = O_p(G)$. On the other hand, $N_G(R, e_R)$ satisfies the hypothesis of 2 with R instead of Q, since P normalises R, and consequently (R, e_R). So $kN_G(R, e_R)e_R$ is nilpotent. In particular, $N_G(R, e_R)/C_G(R)$ is a p-group, and hence so is $G/C_G(Q)$. In other words, $G = PC_G(Q)$, and hence kGb is nilpotent by 6, a contradiction. □

We are now in the situation where kGb is an extension of the nilpotent block $kQG_C(Q)b$, and this is where the results of Kulshammer and Puig in [4] come in.

8. There exists a short exact sequence of groups

$$1 \longrightarrow Q \longrightarrow L \longrightarrow G/QC_G(Q) \longrightarrow 1$$

such that P is a Sylow p-subgroup of L and such that we have $F_{G,b} = F_L$.

Proof. Note first that P is also a defect group of $\{b\}$ viewed as a point of G on $OQC_G(Q)$ because P is maximal with the property $Br_P(b) \neq 0$. The existence of a canonical short exact sequence of finite groups as stated such that P is a Sylow-p-
subgroup of L is a particular case of [5] 1.8]. The equality $\mathcal{F}_{G,b} = \mathcal{F}_L$ is a translation of the statement [6 1.8.2], which requires a brief explanation. Since Q is normal in L and in G, it suffices to show that the images in $\text{Aut}(R)$ of $N_G(R,e_R)/C_G(R)$ and $N_L(R)/C_L(R)$ are equal, where R is a subgroup of P containing Q. As (Q,e_Q) is b-centric and Q is p-centric in L, it follows from a result of Puig (cf. [7 (41.1), (41.4)]) that (R,e_R) is b-centric and R is p-centric in L (that is, $Z(R)$ is a Sylow-p-subgroup of $C_L(R)$). In particular, $kC_G(R)e_R$ has a unique conjugacy class of primitive idempotents. Setting $H = QC_G(Q)$, we have $C_G(R) = C_H(R)$, hence there is a unique point γ_R of R on kH such that $B_{iR}(i)e_R = i$ for some (and hence any) element i of γ_R. In this way, we get an inclusion preserving bijection, $R_{\gamma_R} \to (R,e_R)$ between local pointed groups R_{γ_R} on kHb for which $Q_{\gamma_R} \subseteq R_{\gamma_R} \subseteq P_{\gamma_R}$ and kGb-Brauer pairs, (R,e_R) with $(Q,e_Q) \subseteq (R,e_R) \subseteq (P,e_P)$. Further, it is clear that $N_G(R,e_R) = N_G(R_{\gamma_R})$. Thus, setting $\bar{G} = G/QC_G(Q)$, with the notation in [6 1.8] (which is defined in [6] 2.8), we have $E_{G,\bar{G}}(R,e_R) = E_{L,\bar{G}}(R)$ for any subgroup R such that $Q \subseteq R \subseteq P$. By [6] (2.8.1), the canonical maps $E_{G,\bar{G}}(R,e_R) \to E_G(R,e_R)$ and $E_{L,\bar{G}}(R) \to E_{L}(R)$ are surjective. Thus $E_G(R,e_R) = E_{L}(R)$, which implies the equality $\mathcal{F}_{G,b} = \mathcal{F}_L$. \\

9. We have $\mathcal{F}_{N,c} = \mathcal{F}_{N_L(Z(J(P)))}$.

Proof. Since $Z(J(P))$ is normal in both N and $N_L(Z(J(P)))$, it suffices to show that the images of $N_G(S,f) \cap N$ and $N_L(S) \cap N_L(Z(J(P)))$ in $\text{Aut}(S)$ are equal, where (S,f) is a c-Brauer pair contained in (P,e_P) such that $Z(J(P)) \subseteq S$. Note that then $C_G(S) \subseteq N$ and hence $f = e_S$. Also, by 8 we have $\mathcal{F}_{G,b} = \mathcal{F}_L$. Thus for any $x \in N_G(S,e_S)$ there is $y \in N_L(S)$ such that $\gamma u = \gamma y u$ for all $u \in S$. Since $Z(J(P)) \subseteq S$ we have $x \in N_G(S,e_S) \cap N$ if and only if $y \in N_L(S) \cap N_L(Z(J(P)))$, from which the equality 9 follows.

We conclude the proof of the Theorem as follows. Since kgb is not nilpotent, L is not a p-nilpotent group by 8. However, kNc is nilpotent and hence $N_L(Z(J(P)))$ is p-nilpotent by 9. This contradicts the normal p-complement theorem [5 Ch. 8, Theorem 3.1] of Glauberman and Thompson.

ACKNOWLEDGEMENTS

This work was done while the second author was a visitor at the Mathematical Institute of the University of Oxford and he would like to thank the institute for its hospitality.

REFERENCES

Department of Mathematics, University College, High Street, Oxford OX14BH, United Kingdom

Current address: Department of Mathematics, The Ohio State University, 231 W. 18th Avenue, Columbus, Ohio 43210

CNRS, Université Paris 7, UFR Mathématiques, 2, place Jussieu, 75251 Paris Cedex 05, France

Current address: Department of Mathematics, The Ohio State University, 231 W. 18th Avenue, Columbus, Ohio 43210