Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Differential equations over polynomially bounded o-minimal structures


Authors: Jean-Marie Lion, Chris Miller and Patrick Speissegger
Journal: Proc. Amer. Math. Soc. 131 (2003), 175-183
MSC (2000): Primary 26A12, 34E99; Secondary 34E05, 03C64
DOI: https://doi.org/10.1090/S0002-9939-02-06509-7
Published electronically: May 22, 2002
MathSciNet review: 1929037
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate the asymptotic behavior at $+\infty$ of non-oscillatory solutions to differential equations $y'=G(t,y), t>a$, where $G\colon\mathbb{R} ^{1+l}\to\mathbb{R} ^l$ is definable in a polynomially bounded o-minimal structure. In particular, we show that the Pfaffian closure of a polynomially bounded o-minimal structure on the real field is levelled.


References [Enhancements On Off] (What's this?)

  • 1. E. Bierstone and P. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 5-42. MR 89k:32011
  • 2. M. Boshernitzan, Universal formulae and universal differential equations, Ann. of Math. 124 (1986), 273-291. MR 88a:12007
  • 3. F. Cano, R. Moussu, and F. Sanz, Oscillation, spiralement, tourbillonnement, Comment. Math. Helv. 75 (2000), 284-318. MR 2001k:37034
  • 4. L. van den Dries, A generalization of the Tarski-Seidenberg theorem, and some nondefinability results, Bull. Amer. Math. Soc. (N.S) 15 (1986), 189-193. MR 88b:03048
  • 5. -, $T$-convexity and tame extensions. II, J. Symbolic Logic 62 (1997), 14-34. MR 98h:03048
  • 6. -, Tame topology and o-minimal structures, London Math. Soc. Lecture Note Ser., vol. 248, Cambridge University Press, Cambridge, 1998. MR 99j:03001
  • 7. L. van den Dries, D. Marker, and A. Macintyre, The elementary theory of restricted analytic fields with exponentiation, Ann. of Math. 140 (1994), 183-205. MR 95k:12015
  • 8. L. van den Dries and C. Miller, Geometric categories and o- minimal structures, Duke Math. J. 84 (1996), 497-540. MR 97i:32008
  • 9. L. van den Dries and P. Speissegger, The real field with convergent generalized power series, Trans. Amer. Math. Soc. 350 (1998), 4377-4421. MR 99a:03036
  • 10. -, The field of reals with multisummable series and the exponential function, Proc. London Math. Soc. 81 (2000), 513-565.
  • 11. F.-V. Kuhlmann and S. Kuhlmann, The exponential rank of nonarchimedean exponential fields, Real Algebraic Geometry and Ordered Structures, Contemp. Math., vol. 253, Amer. Math. Soc., Providence, RI, 2000, pp. 181-201. MR 2001d:12012
  • 12. J.-M. Lion, Inégalité de \Lojasiewicz en géométrie pfaffienne, Illinois J. Math. 44 (2000), 889-900. MR 2001k:32013
  • 13. J.-M. Lion and P. Speissegger, Analytic stratification in the Pfaffian closure of an o- minimal structure, Duke Math. J. 103 (2000), 215-231.MR 2001j:03076
  • 14. D. Marker and C. Miller, Levelled o- minimal structures, Rev. Mat. Complut. (Madrid) 10 (1997), 241-249. MR 99c:03060
  • 15. C. Miller, Expansions of the real field with power functions, Ann. Pure Appl. Logic 68 (1994), 79-94. MR 95i:03081
  • 16. -, Exponentiation is hard to avoid, Proc. Amer. Math. Soc. 122 (1994), 257-259. MR 94k:03042
  • 17. -, Infinite differentiability in polynomially bounded o- minimal structures, Proc. Amer. Math. Soc. 123 (1995), 2551-2555. MR 95j:03069
  • 18. -, A growth dichotomy for o- minimal expansions of ordered fields, Logic: From Foundations to Applications, Oxford Sci. Publ., Oxford Univ. Press, New York, 1996, pp. 385-399. MR 98a:03052
  • 19. C. Miller and P. Speissegger, Pfaffian differential equations over exponential o- minimal structures, J. Symbolic Logic 67 (2002), 438-448.
  • 20. J.-P. Rolin, P. Speissegger, and A. Wilkie, Quasianalytic Denjoy-Carleman classes and o-minimality, preprint (2001).
  • 21. M. Rosenlicht, The rank of a Hardy field, Trans. Amer. Math. Soc. 280 (1983), 659-671. MR 85d:12002
  • 22. -, Rank change on adjoining real powers to Hardy fields, Trans. Amer. Math. Soc. 284 (1984), 829-836. MR 85i:12008
  • 23. -, Growth properties of functions in Hardy fields, Trans. Amer. Math. Soc. 299 (1987), 261-272. MR 88b:12010
  • 24. J. Shackell, Rosenlicht fields, Trans. Amer. Math. Soc. 335 (1993), 579-595. MR 93d:12012
  • 25. P. Speissegger, The Pfaffian closure of an o- minimal structure, J. Reine Angew. Math. 508 (1999), 189-211. MR 2000j:14093

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 26A12, 34E99, 34E05, 03C64

Retrieve articles in all journals with MSC (2000): 26A12, 34E99, 34E05, 03C64


Additional Information

Jean-Marie Lion
Affiliation: Laboratoire de Topologie, Université de Bourgogne, 21078 Dijon cedex, France
Address at time of publication: IRMAR, Campus Beaulieu, Université Rennes I, 35042 Rennes cedex, France
Email: lion@maths.univ-rennes1.fr

Chris Miller
Affiliation: Department of Mathematics, The Ohio State University, 231 West 18th Avenue, Columbus, Ohio 43210
Email: miller@math.ohio-state.edu

Patrick Speissegger
Affiliation: Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 3G3
Address at time of publication: Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Madison, Wisconsin 53706
Email: speisseg@math.wisc.edu

DOI: https://doi.org/10.1090/S0002-9939-02-06509-7
Received by editor(s): April 11, 2000
Received by editor(s) in revised form: August 20, 2001
Published electronically: May 22, 2002
Additional Notes: The second author’s research was supported by NSF Grants DMS-9896225 and DMS-9988855.
The third author’s research was supported in part by NSERC Grant OGP0009070.
Communicated by: Carl G. Jockusch, Jr.
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society