Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A norm on the holomorphic Besov space


Author: Bjarte Böe
Journal: Proc. Amer. Math. Soc. 131 (2003), 235-241
MSC (2000): Primary 30H05, 30D50, 46E35
DOI: https://doi.org/10.1090/S0002-9939-02-06529-2
Published electronically: May 22, 2002
MathSciNet review: 1929043
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We obtain a description of the holomorphic Besov space that is valid for the indices $1 \leq p,q < \infty$, $0 < s < 1$. Applications to inner-outer factorisation, and to inner functions in particular, are provided.


References [Enhancements On Off] (What's this?)

  • 1. P. AHERN, The mean modulus and the derivative of an inner function, Indiana Univ. Math. J. 28 (1979), no. 2, 311-347. MR 80h:30027
  • 2. A. ALEMAN, Hilbert spaces of analytic functions between the Hardy and the Dirichlet space, Proc. Amer. Math. Soc 115 (1992), 97-104. MR 92i:46030
  • 3. J. ARAZY, S.D. FISHER, and J. PEETRE, Besov norms of rational functions, Function spaces and applications (Berlin-New York) (M. Cwikel, J. Peetre, Y. Sagher, and H. Wallin, eds.), Lecture Notes in Math., vol. 1302, Springer-Verlag, 1988, pp. 125-129. MR 90a:46051
  • 4. I. A. BORICHEVA and E. M. DYNKIN, On a nonclassical free interpolation problem, St. Petersburg Math. J. 4 (1993), no. 5, 871-908. MR 94a:30027
  • 5. L. CARLESON, A representation formula for the Dirichlet integral, Math. Z. (1960), 190-196. MR 22:3803
  • 6. K. M. DYAKONOV, Equivalent norms on Lipschitz-type spaces of holomorphic functions, Acta Math 178 (1997), 143-167. MR 98g:46029
  • 7. -, Besov spaces and outer functions, Michigan Math J. 45 (1998), 143-157. MR 99e:46033
  • 8. M. JEVTIC, On Blaschke products in Besov spaces, J. Math. Anal. Appl. 149 (1990), no. 1, 86-95. MR 91c:30062
  • 9. M. PAVLOVIC, On Dyakonov's paper ``equivalent norms on Lipschitz-type spaces of holomorphic functions", Acta Math 183 (1999), 141-143. MR 2000m:46058
  • 10. S. RICHTER and A. SHIELDS, Bounded analytic functions in the Dirichlet space, Math. Z. 198 (1988), 151-159. MR 89c:46039
  • 11. N. SHIROKOV, Analytic functions smooth up to the boundary, Lecture Notes in Math, vol. 1312, Springer-Verlag, 1988, Berlin and Heidelberg. MR 90h:30087
  • 12. -, Inner functions in the analytic Besov classes, St. Petersburg Math. J. 8 (1997), no. 4, 675-694. MR 97k:30047
  • 13. -, Outer functions from the analytic O. V. Besov classes, Journal of Math. Sci. 85 (1997), no. 2, 1867-1897. MR 97g:30038
  • 14. E. STEIN, Singular integrals and differentiability properties of functions, Princeton University Press, 1970. MR 44:7280
  • 15. M. STOLL, Invariant potential theory in the unit ball of $C^n$, London Mathematical Society Lecture Note Series, vol. 199, Cambridge University Press, 1994. MR 96f:31011
  • 16. I. E. VERBITSKI, Inner functions, Besov spaces and multipliers, Soviet Math. Dokl 29 (1984), no. 3.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 30H05, 30D50, 46E35

Retrieve articles in all journals with MSC (2000): 30H05, 30D50, 46E35


Additional Information

Bjarte Böe
Affiliation: Institute of Mathematics, University of Bergen Godskes hus, Joh. Brunsgt. 12 5008 Bergen, Norway
Email: bjarte.boee@mi.uib.no

DOI: https://doi.org/10.1090/S0002-9939-02-06529-2
Received by editor(s): February 19, 2001
Received by editor(s) in revised form: September 3, 2001
Published electronically: May 22, 2002
Communicated by: Juha M. Heinonen
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society