On approximately convex functions

Author:
Zsolt Páles

Journal:
Proc. Amer. Math. Soc. **131** (2003), 243-252

MSC (2000):
Primary 26A51, 26B25

DOI:
https://doi.org/10.1090/S0002-9939-02-06552-8

Published electronically:
June 5, 2002

MathSciNet review:
1929044

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A real valued function defined on a real interval is called -convex if it satisfies

The main results of the paper offer various characterizations for -convexity. One of the main results states that is -convex for some positive and if and only if can be decomposed into the sum of a convex function, a function with bounded supremum norm, and a function with bounded Lipschitz-modulus. In the special case , the results reduce to that of Hyers, Ulam, and Green obtained in 1952 concerning the so-called -convexity.

**[BD15]**F. Bernstein and G. Doetsch,*Zur Theorie der konvexen Funktionen*, Math. Annalen**76**(1915), 514-526.**[Cho84]**P. W. Cholewa,*Remarks on the stability of functional equations*, Aequationes Math.**27**(1984), 76-86. MR**86d:39016****[CP93]**E. Casini and P. L. Papini,*A counterexample to the infinity version of the Hyers-Ulam stability theorem*, Proc. Amer. Math. Soc.**118**(1993), 885-890. MR**93i:26022****[DHR99]**S. J. Dilworth, R. Howard, and J. W. Roberts,*Extremal approximately convex functions and estimating the size of convex hulls*, Advances Math.**148**(1999), 1-43. MR**2001c:26015****[Ger88]**R. Ger,*Almost approximately convex functions*, Math. Slovaca**38**(1988), no. 1, 61-78. MR**89m:26020a****[Ger94]**R. Ger,*Stability aspects of delta-convexity*, Stability of mappings of Hyers-Ulam type (Palm Harbor, FL), Hadronic Press, Palm Harbor, FL, 1994, pp. 99-109. MR**95i:39026****[Gre52]**J. W. Green,*Approximately convex functions*, Duke Math. J.**19**(1952), 499-504. MR**14:254c****[HLP34]**G. H. Hardy, J. E. Littlewood, and G. Pólya,*Inequalities*, Cambridge University Press, Cambridge, 1934, (first edition), 1952 (second edition). MR**13:727e****[HU52]**D. H. Hyers and S. M. Ulam,*Approximately convex functions*, Proc. Amer. Math. Soc.**3**(1952), 821-828. MR**14:254b****[Kuc70]**M. Kuczma,*Almost convex functions*, Colloq. Math.**21**(1970), 279-284. MR**41:7043****[Kuc85]**M. Kuczma,*An Introduction to the Theory of Functional Equations and Inequalities*, Panstwowe Wydawnictwo Naukowe -- Uniwersytet Slaski, Warszawa-Kraków-Katowice, 1985. MR**86i:39008****[Lac99]**M. Laczkovich,*The local stability of convexity, affinity and of the Jensen equation*, Aequationes Math.**58**(1999), 135-142. MR**2001d:39028****[Mro01]**J. Mrowiec,*Remark on approximately Jensen-convex functions*, C. R. Math. Rep. Acad. Sci. Canada**23**(2001), 16-21.**[NN93]**C. T. Ng and K. Nikodem,*On approximately convex functions*, Proc. Amer. Math. Soc.**118**(1993), no. 1, 103-108. MR**93f:26006****[Pál00]**Zs. Páles,*Bernstein-Doetsch-type results for general functional inequalities*, Rocznik Nauk.-Dydakt. Prace Mat.**17**(2000), 197-206, Dedicated to Professor Zenon Moszner on his 70th birthday. MR**2001k:26015****[RV73]**A. W. Roberts and D. E. Varberg,*Convex Functions*, Academic Press, New York-London, 1973. MR**56:1201**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
26A51,
26B25

Retrieve articles in all journals with MSC (2000): 26A51, 26B25

Additional Information

**Zsolt Páles**

Affiliation:
Institute of Mathematics and Informatics, University of Debrecen, H-4010 Debrecen, Pf. 12, Hungary

Email:
pales@math.klte.hu

DOI:
https://doi.org/10.1090/S0002-9939-02-06552-8

Keywords:
Convexity,
$(\varepsilon,\delta)$-convexity,
stability of convexity,
$(\varepsilon,\delta)$-subgradient,
$(\varepsilon,\delta)$-subdifferentiability

Received by editor(s):
April 2, 2001

Received by editor(s) in revised form:
September 4, 2001

Published electronically:
June 5, 2002

Additional Notes:
This research was supported by the Hungarian Scientific Research Fund (OTKA) Grant T-038072 and by the Higher Education, Research and Development Fund (FKFP) Grant 0215/2001.

Communicated by:
Jonathan M. Borwein

Article copyright:
© Copyright 2002
American Mathematical Society