Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Jordan isomorphisms of nest algebras


Author: Fangyan Lu
Journal: Proc. Amer. Math. Soc. 131 (2003), 147-154
MSC (2000): Primary 47L35, 47L20, 46H10
DOI: https://doi.org/10.1090/S0002-9939-02-06587-5
Published electronically: May 22, 2002
MathSciNet review: 1929034
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\mathcal{T}(N)$ and $\mathcal{T}(\mathcal{M})$ be two nest algebras. A Jordan isomorphism $\phi $ from $\mathcal{T}(N)$ onto $\mathcal{T}(\mathcal{M})$ is a bijective linear map such that $\phi (T^{2})=\phi (T)^{2}$ for every $T\in \mathcal{T}(\mathcal{N})$. In this note, we prove that every Jordan isomorphism of nest algebras is of the form $T\rightarrow STS^{-1}$ or $T\rightarrow ST^{*}S^{-1}$ and then is, in fact, an isomorphism or an anti-isomorphism.


References [Enhancements On Off] (What's this?)

  • 1. J. Arazy and B. Solel, Isometries of non-adjoint operators algebras, J. Funct. Anal. 90 (1990), 284-305. MR 91c:47085
  • 2. K.I. Beidar, M. Bresar, M.A. Chebotar, Jordan isomorphisms of triangular matrix algebras over a connected commutative ring, Linear algebra Appl. 312 (2000), 197-201. MR 2001a:16048
  • 3. K.R. Davidson, Nest Algebras, Pitman Research Notes in Mathematics Series 191, Longman Scientific and Technical, Burnt Mill Harlow, Essex, UK, 1988. MR 90f:47062
  • 4. J. Dixmier, Les moyennes invariant dans les semi-groupes et leur applications, Acta Sci. Math. (Szeged) 12A (1950), 213-227.
  • 5. J. Dixmier, Les algèbras d'opèrateurs dans l'espace Hilbertien, Gauthier-Villars, Paris, 1969. MR 50:5482; reprinted MR 98a:46065
  • 6. N. Jacobson and Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (1950), 479-502. MR 12:387h
  • 7. J. R. Ringrose, On some algebras of operators II, Proc. London Math. Soc. 16 (1966), 385-402. MR 33:4703
  • 8. P. Semrl, Jordan $\ast $-derivations of standard operator algebras, Proc. Amer. Math. Soc. 120 (1994), 515-518. MR 94d:46066
  • 9. M.F. Smiley, Jordan homomorphisms onto prime rings, Trans. Amer. Math. Soc. 84 (1957), 426-429. MR 18:715b
  • 10. B. Solel, Isometries of CSL algebras, Trans. Amer. Math. Soc. 332 (1992), 595-606. MR 92j:47082

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47L35, 47L20, 46H10

Retrieve articles in all journals with MSC (2000): 47L35, 47L20, 46H10


Additional Information

Fangyan Lu
Affiliation: Department of Mathematics, Suzhou University, Suzhou 215006, People’s Republic of China
Email: fylu@pub.sz.jsinfo.net

DOI: https://doi.org/10.1090/S0002-9939-02-06587-5
Keywords: Jordan isomorphism, nest algebra, nilpotent Jordan ideal
Received by editor(s): June 8, 2000
Received by editor(s) in revised form: October 30, 2000, and August 16, 2001
Published electronically: May 22, 2002
Communicated by: David R. Larson
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society