Abstract. Let $T(N)$ and $T(M)$ be two nest algebras. A Jordan isomorphism ϕ from $T(N)$ onto $T(M)$ is a bijective linear map such that $\phi(T^2) = \phi(T)^2$ for every $T \in T(N)$. In this note, we prove that every Jordan isomorphism of nest algebras is of the form $T \to STS^{-1}$ or $T \to ST^*S^{-1}$ and then is, in fact, an isomorphism or an anti-isomorphism.

The motivation for this paper is the work by J. Arazy and B. Solel. In [1], J. Arazy and B. Solel proved that every surjective isometry α of nest algebras is of the form $T \to UTU^{-1}$ or $T \to UT^*U^{-1}$ provided that $\alpha(I) = I$, where U is a unitary operator. This is an elegant characterization. As we observed, they in fact first proved that such an isometry is a Jordan isomorphism and then completed their job. Let $T(N)$ and $T(M)$ be two nest algebras. A Jordan isomorphism ϕ from $T(N)$ onto $T(M)$ is a bijective linear map such that $\phi(T^2) = \phi(T)^2$ for every $T \in T(N)$. The aim of the present paper is to characterize Jordan isomorphisms of nest algebras. Our main result is that every Jordan isomorphism of nest algebras is of the form $T \to STS^{-1}$ or $T \to ST^*S^{-1}$ and then is, in fact, either an isomorphism or an anti-isomorphism. The same result was concluded in [6] for Jordan isomorphisms from a ring onto an integral domain. Clearly a nest algebra is not an integral domain and a Jordan isomorphism is not isometric; we must use different techniques. This leads us to study nilpotent Jordan ideals, which is the main subject of this paper.

Throughout, H is a complex Hilbert space, $B(H)$ is the algebra of all linear bounded operators on H, N and M are nests of projections on H, $T(N)$ and $T(M)$ are the nest algebras associated with N and M respectively, and ϕ is a Jordan isomorphism from $T(N)$ onto $T(M)$. For $N \in \mathcal{N}$, we use N^\perp to denote $I - N$. For more information concerning nest algebras, we refer readers to [3].

We begin with two lemmas. The first is due to [6] and the second is well-known.

Lemma 1. For any $A, B, C \in T(N)$, the following hold:
1. $\phi(AB + BA) = \phi(A)\phi(B) + \phi(B)\phi(A)$.
2. $\phi(ABA) = \phi(A)\phi(B)\phi(A)$.
3. $\phi(ABC + CBA) = \phi(A)\phi(B)\phi(C) + \phi(C)\phi(B)\phi(A)$.

Lemma 2. We have $T(N)' = \mathbb{C}I$, where $T(N)'$ is the commutant of $T(N)$ and \mathbb{C} is the set of complex numbers.
Proposition 3. We have $\phi(I) = I$.

Proof. By Lemma 1, for every $T \in \mathcal{T}(N)$, we have that

\[\begin{align*}
2\phi(T) &= \phi(TI + IT) = \phi(T)\phi(I) + \phi(I)\phi(T) \\
\end{align*}\]

and

\[\begin{align*}
\phi(T) &= \phi(TTI) = \phi(I)\phi(T)\phi(I).
\end{align*}\]

Since $\phi(I)$ is an idempotent, by (1) and (2), we have that $\phi(T)\phi(I) = \phi(T) = \phi(T)\phi(I)$. Therefore $\phi(I) \in \mathcal{T}M'$, and then there exists a scalar λ such that $\phi(I) = \lambda I$. Thus the result follows from the fact that $\phi(I)$ is an idempotent and $\phi(I) \neq 0$.

Proposition 4. Suppose that T and S are in $\mathcal{T}(N)$ such that $TS = ST = 0$. Then $\phi(T)\phi(S) = \phi(S)\phi(T) = 0$.

Proof. By Lemma 1(1), we have that

\[\begin{align*}
\phi(T)\phi(S) + \phi(S)\phi(T) &= \phi(TS + ST) = 0.
\end{align*}\]

For every $A \in \mathcal{T}(N)$, by Lemma 1(3),

\[\begin{align*}
\phi(T)\phi(S)\phi(A) + \phi(A)\phi(S)\phi(T) &= \phi(TSA + AST) = 0.
\end{align*}\]

Combining (3) and (4) yields

\[\begin{align*}
\phi(T)\phi(S)\phi(A) - \phi(A)\phi(T)\phi(S) &= 0.
\end{align*}\]

Since A is arbitrary, $\phi(T)\phi(S) \in \mathcal{T}(M)'$. Hence

\[\begin{align*}
\phi(T)\phi(S) &= \lambda I
\end{align*}\]

for some scalar λ. Thus

\[\begin{align*}
0 &= \phi(TST) = \phi(T)\phi(S)\phi(T) = \lambda \phi(T).
\end{align*}\]

Equalities (5) and (6) force $\phi(T)\phi(S) = 0$ and then $\phi(S)\phi(T) = 0$.

Let S be a subset of a Banach algebra A. If $AB = BA = 0$ for any $A, B \in S$, we say that S is nilpotent. Proposition 4 shows that a Jordan isomorphism preserves nilpotent sets. Let $N_0 = \{N \in N: 0 < N < I\}$ and $M_0 = \{M \in M: 0 < M < I\}$. For $N \in N_0$, let $I(N) = \{NTN^\perp: T \in \mathcal{T}(N)\}$. Then $I(N)$ is a nilpotent subset of $\mathcal{T}(N)$. Moreover, we will show that such $I(N)$ is maximal in the sense that $I(N)$ is not properly contained in any other nilpotent subset of $\mathcal{T}(N)$.

Lemma 5. If S is a nilpotent subset of $\mathcal{T}(N)$ such that $S \supset I(N)$ for some $N \in N_0$, then $S = I(N)$.

Proof. Suppose that $S \in \mathcal{S}$. Then for every $T \in \mathcal{T}(N)$, we have

\[\begin{align*}
SNTN^\perp &= 0 \quad \text{and} \quad NTN^\perp S = 0.
\end{align*}\]

Since $S \in \mathcal{T}(N)$,

\[\begin{align*}
NSNTN^\perp &= 0 \quad \text{and} \quad NTN^\perp SN^\perp = 0.
\end{align*}\]

Since T is arbitrary, $NSN = N^\perp SN^\perp = 0$. Hence $S = NSN^\perp \in I(N)$.

$I(N)$ is also an ideal, but in general, a Jordan isomorphism does not preserve ideals. For our purpose, we need the following weaker concept [9].
Definition 6. Let \mathcal{J} be a subspace of $T(N)$. \mathcal{J} is called a J-ideal (Jordan ideal) if $AT + TA \in \mathcal{J}$ for every $A \in \mathcal{J}$ and $T \in T(N)$.

By Lemma 1, Jordan isomorphisms preserve J-ideals. By Lemma 5, $\mathcal{I}(N)$ is a maximal nilpotent J-ideal. We will show that the ideals $\mathcal{I}(N)$ are a model for maximal nilpotent J-ideals. In what follows, the rank one operator $e \otimes f$ is defined by $(e \otimes f)x = (x, f)e$. For $N \in \mathcal{N}$, define $N_\perp = \sup\{P \in \mathcal{N} : P < N\}$. It is well known that $e \otimes f$ belongs to $\mathcal{I}(N)$ if and only if there is an element N in \mathcal{N} such that $e \in NH$ and $f \in N^\perp H$.

Theorem 7. Suppose that \mathcal{J} is a maximal nilpotent ideal of $\mathcal{I}(N)$. Then there exists an element N in \mathcal{N}_0 such that $\mathcal{J} = \mathcal{I}(N)$.

Proof. Define

$$N = \inf\{L \in \mathcal{N} : L^+ \mathcal{J} = \{0\}\},$$

$$M = \sup\{L \in \mathcal{N} : \mathcal{J}L = \{0\}\}.$$

We first prove that $N \leq M$. Otherwise $N > M$. Then we can take $T, S \in \mathcal{J}$ and vectors e, f such that $e \otimes f \in \mathcal{I}(N)$ and $Te \otimes fS \neq 0$ as follows. If $M = N_\perp$, by the definition of N and M, there exist $e \in (N - M)H, f \in M^+H$ and $T, S \in \mathcal{J}$ such that $Te \neq 0 \neq S^*f$. If $M \neq N_\perp$, then there is an element $P \in \mathcal{N}$ such that $M < P < N$. By the definition of N and M, there exist $e \in (P - M)H, f \in (N - P)H$ and $T, S \in \mathcal{J}$ such that $Te \neq 0 \neq S^*f$.

Since \mathcal{J} is a J-ideal, $A = Te \otimes f + e \otimes fT \in \mathcal{J}$. Thus $AS = 0$. But

$$AS = Te \otimes fS + e \otimes fTS = Te \otimes fS \neq 0.$$

Therefore $N \leq M$, and then

$$\mathcal{J} = (N + N^\perp)\mathcal{J}(N + N^\perp) = N\mathcal{J}N^\perp \subset \mathcal{I}(N).$$

By the maximality, we have that $\mathcal{J} = \mathcal{I}(N)$.

Since $\mathcal{I}(N) (N \in \mathcal{N}_0)$ is a maximal nilpotent J-ideal in $\mathcal{T}(N)$, $\phi(\mathcal{I}(N))$ is also a maximal nilpotent J-ideal in $\mathcal{T}(M)$. By Theorem 7, there is only one element $\hat{N} \in \mathcal{M}_0$ such that $\phi(\mathcal{I}(N)) = \mathcal{I}(\hat{N})$. Define a map $\tilde{\phi}$ from \mathcal{N}_0 to \mathcal{M}_0 by $\tilde{\phi}(N) = \hat{N}$ for $N \in \mathcal{N}_0$ such that $\phi(\mathcal{I}(N)) = \mathcal{I}(\hat{N})$. Then $\phi(NTN^\perp) = \hat{N}\phi(NTN^\perp)\hat{N}^\perp$ for every $T \in \mathcal{T}(N)$ and $N \in \mathcal{N}_0$.

Proposition 8. The map $\tilde{\phi}$ is bijective.

Proof. First we show that $\tilde{\phi}$ is injective. For otherwise, there are $P < Q$ (in \mathcal{N}_0) such that $\phi(\mathcal{I}(P)) = \phi(\mathcal{I}(Q)) = \mathcal{I}(\hat{P})$. Choose non-zero vectors $x \in PH, y \in (Q - P)H$ and $z \in Q^\perp H$. Clearly $\phi(x \otimes y)$ and $\phi(y \otimes z)$ are both in $\mathcal{I}(\hat{P})$ and hence

$$\phi(x \otimes y)\phi(y \otimes z) = \phi(y \otimes z)\phi(x \otimes y) = 0.$$

Applying Proposition 4 to ϕ^{-1},

$$(x \otimes y)(y \otimes z) = 0,$$

but

$$(x \otimes y)(y \otimes z) = \|y\|^2 x \otimes z \neq 0.$$

Considering ϕ^{-1} instead of ϕ, for every element $M \in \mathcal{M}_0$, $\phi^{-1}(\mathcal{I}(M))$ is a maximal nilpotent J-ideal in $\mathcal{T}(N)$. Hence there is an element N in \mathcal{N}_0 such that
\(\mathcal{I}(N) = \phi^{-1}(\mathcal{I}(M)) \). Thus \(\phi(\mathcal{I}(N)) = \mathcal{I}(M) \) and hence \(M = \hat{N} \). That is to say, \(\hat{\phi} \) is surjective.

Now we want to identify \(\phi(N) \). For that, we need Lemma 9. It seems to be known, but we cannot find a reference.

Lemma 9. Suppose that \(S_1 \in B(\mathcal{H}_1) \) and \(S_2 \in B(\mathcal{H}_2) \) are idempotent operators. If \(S_1 T + TS_2 = T \) for every \(T \in B(\mathcal{H}_2, \mathcal{H}_1) \), then either \(S_1 = I \) and \(S_2 = 0 \) or \(S_1 = 0 \) and \(S_2 = I \).

Proof. Fix a non-zero vector \(y \) in \(\mathcal{H}_2 \). Then for every \(x \) in \(\mathcal{H}_1 \), we have
\[
S_1 x \otimes y + x \otimes y S_2 = x \otimes y.
\]
This implies that \(S_1 = \lambda I \) for some scalar \(\lambda \). Thus the result is immediate from the fact that \(S_1 \) is an idempotent.

Theorem 10. Let \(\hat{N} = \hat{\phi}(N) \) for \(N \in N_0 \). Then exactly one of the following holds:

(I) For all \(N \in N \), \(\phi(N) = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 0 \end{bmatrix} \) on \(\mathcal{H} = \hat{N} \mathcal{H} \oplus \hat{N}^\perp \mathcal{H} \).

(II) For all \(N \in N \), \(\phi(N) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \) on \(\mathcal{H} = \hat{N} \mathcal{H} \oplus \hat{N}^\perp \mathcal{H} \).

Proof. We first prove that for every \(N \in N_0 \), one of the following holds:

(a) \(\phi(N) = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 0 \end{bmatrix} \) on \(\mathcal{H} = \hat{N} \mathcal{H} \oplus \hat{N}^\perp \mathcal{H} \).

(b) \(\phi(N) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \) on \(\mathcal{H} = \hat{N} \mathcal{H} \oplus \hat{N}^\perp \mathcal{H} \).

For every \(T = NTN^\perp \), by Lemma 1(1)
\[
\phi(T) = \phi(NT + TN) = \phi(N)\phi(T) + \phi(T)\phi(N).
\]
Suppose that \(\phi(N) = \begin{bmatrix} \frac{S_1}{2} & 0 \\ 0 & 0 \end{bmatrix} \) on \(\mathcal{H} = \hat{N} \mathcal{H} \oplus \hat{N}^\perp \mathcal{H} \). Then \(S_1 \) and \(S_2 \) are idempotent.

Since \(\phi(T) = \hat{N}\phi(NTN^\perp)\hat{N}^\perp \), by (7) we have
\[
\phi(T) = S_1\phi(T) + \phi(T)S_2.
\]
Since \(\phi(\mathcal{I}(N)) = \mathcal{I}(\hat{N}) \), by Lemma 9, either \(S_1 = I \) and \(S_2 = 0 \) which implies (a) holds, or \(S_1 = 0 \) and \(S_2 = I \) which implies (b) holds.

Suppose that there are \(N_1 \) and \(N_2 \) in \(N_0 \) such that \(\phi(N_1) = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 0 \end{bmatrix} \) on \(\mathcal{H} = \hat{N}_1 \mathcal{H} \oplus \hat{N}_1^\perp \mathcal{H} \) and \(\phi(N_2) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \) on \(\mathcal{H} = \hat{N}_2 \mathcal{H} \oplus \hat{N}_2^\perp \mathcal{H} \). We consider two cases and reach a contradiction.

Case 1. \(N_1 < N_2 \). Then \(N_1N_2^\perp = N_2^\perp N_1 = 0 \) and hence \(\phi(N_1)\phi(N_2^\perp) = \phi(N_2^\perp)\phi(N_1) = 0 \) by Proposition 4. But \(\phi(N_2^\perp) = I - \phi(N_2) = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 0 \end{bmatrix} \) on \(\mathcal{H} = \hat{N}_2 \mathcal{H} \oplus \hat{N}_2^\perp \mathcal{H} \). By a simple computation, if \(\hat{N}_1 \leq \hat{N}_2 \), then \(\phi(N_1)\phi(N_2^\perp) \neq 0 \). If \(\hat{N}_1 > \hat{N}_2 \) (up to now, we don’t know whether \(\hat{\phi} \) is order-preserving, i.e. \(\hat{N}_1 < \hat{N}_2 \)), then \(\phi(N_2^\perp)\phi(N_1) \neq 0 \). This is a contradiction.

Case 2. \(N_1 > N_2 \). Similarly we can reach a contradiction.

Remark 11. If Theorem 10(I) holds, then \(\phi(N)\hat{N} = \hat{N} \) and \(\hat{N}\phi(N) = \phi(N) \) for every \(N \in N_0 \), which implies that \(\hat{N} \) is the projection onto the range of \(\phi(N) \).

Hence the range of \(\phi(N) \) is invariant for \(T(M) \) for every \(N \in N \), therefore for every \(T \in T(M) \) we have that \(\phi(T)\phi(N) = \phi(N)\phi(T)\phi(N) \) and
\[
\phi(NTN^\perp) = \phi(NNTN^\perp N^\perp + N^\perp NTTN^\perp N) = \phi(N)\phi(NTN^\perp)\phi(N^\perp) + \phi(N^\perp)\phi(NTN^\perp)\phi(N) = \phi(N)\phi(NTN^\perp)\phi(N^\perp).
\]
Hence, since $\phi(NTN) = \phi(N)\phi(T)\phi(N)$ and $\phi(N^\perp TN^\perp) = \phi(N^\perp)\phi(T)\phi(N^\perp)$, we have that

$$\phi(NTN^\perp) = \phi(N)\phi(T)\phi(N^\perp).$$

Moreover, in this case $\hat{\phi}$ is order-preserving. Indeed, let $P < Q$ (in N_0) and $\hat{P} = \hat{\phi}(P)$ and $\hat{Q} = \hat{\phi}(Q)$. Choose x, y, z as in Proposition 8. Let $T = x \otimes y$ and $S = y \otimes z$. Then $TS \neq 0$. Since

$$\phi(S)\phi(T) = \phi(Q)\phi(S)\phi(Q^\perp)\phi(P)\phi(T)\phi(P^\perp) = 0,$$

by Proposition 4,

$$\phi(T)\phi(S) \neq 0.$$

But $\phi(T)\phi(S) = \phi(T)\hat{P}^\perp\hat{Q}\phi(S)$, so (8) implies that $\hat{P}^\perp\hat{Q} \neq 0$ and hence $\hat{P} < \hat{Q}$.

Similarly, if Theorem 10(II) holds, then $\phi(T)\phi(N^\perp) = \phi(N^\perp)\phi(T)\phi(N^\perp)$ and

$$\phi(NTN^\perp) = \phi(N^\perp)\phi(NTN^\perp)\phi(N) = \phi(N^\perp)\phi(T)\phi(N).$$

Moreover $\hat{\phi}$ is anti-order-preserving, i.e. if $P < Q$ (in N_0), then $\hat{P} > \hat{Q}$.

In the foregoing, we say that ϕ is order preserving if $\hat{\phi}$ is order preserving and ϕ is anti-order preserving if $\hat{\phi}$ is anti-order preserving.

Lemma 12. We have $\phi(N') = \phi(N)'$.

Proof. Suppose that D is in N'. Then $DN = ND$ for every $N \in N$.

If ϕ is order-preserving, then

$$\phi(N)\phi(D) = \phi(N)\phi(NDN + N^\perp DN^\perp) = \phi(N)(\phi(D)\phi(N) + \phi(N^\perp)\phi(D)\phi(N^\perp)) = \phi(N)\phi(D)\phi(N) = \phi(D)\phi(N).$$

So $\phi(N') \subset \phi(N)'$. On the other hand, suppose that T is in $\phi(N)'$. Then $T\phi(N) = \phi(N)T$ for every $N \in N$ and hence $T \in T(M)$. Therefore, there is $D \in T(N)$ such that $T = \phi(D)$. Considering ϕ^{-1}, we have

$$ND = N\phi^{-1}(\phi(N)T\phi(N) + \phi(N^\perp)T\phi(N^\perp)) = N(\phi^{-1}(T)N + N^\perp\phi^{-1}(T)N^\perp) = NDN = DN,$$

which implies $D \in N'$ and hence $T \in \phi(N')$.

If ϕ is anti-order preserving, the proof is similar.

Let Ω be the subspace spanned by N' and $\{I(N) : N \in N_0\}$. It is easy to verify that Ω is in fact an algebra and it contains all rank-1 operators in $T(N)$. Moreover, using the argument of Lemma 3.11 in [1], we have that:

Lemma 13. Suppose that $N_0 \neq \emptyset$. If ϕ is order-preserving, then the restriction of ϕ to Ω is multiplicative. If ϕ is anti-order preserving, then the restriction of ϕ to Ω is anti-multiplicative.

Lemma 14. Suppose that $N_0 \neq \emptyset$. Let \mathcal{G} be a maximal abelian $*$-subalgebra of $T(N)$. Then \mathcal{G} and $\phi(\mathcal{G})$ are both maximal abelian subalgebras of $B(H)$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. Since G is a $*$-subalgebra of $T(N)$, it commutes with each $N \in \mathcal{N}$. By the maximality, $N \subset G$. Suppose that $T \in B(H)$ such that T commutes with G. Then T commutes with N and then $T \in T(N)$. Hence $T \in G$ and G is maximal in $B(H)$.

Since $N' \subset G$, $G = G' \subset N'$. By Lemma 13, $\phi(G)$ is an abelian subalgebra. Suppose that X belongs to $\phi(G)'$; then $X \in \phi(N)'$. By Lemma 12, $X = \phi(D)$ for some $D \in N'$ and hence $X \in \phi(\Omega)$. By Lemma 13, the restriction of ϕ^{-1} to $\phi(\Omega)$ is multiplicative or anti-multiplicative. Therefore, D commutes with G and hence $D \in G$. Thus $X \in \phi(G)$ and $\phi(G)$ is maximal abelian in $B(H)$.

Theorem 15. Suppose that ϕ is a Jordan isomorphism from a nest algebra $T(N)$ onto a nest algebra $T(M)$. Then there is an invertible operator S such that either $\phi(T) = STS^{-1}$ or $\phi(T) = ST^*S^{-1}$ for every $T \in T(N)$.

Proof. First we consider the exceptional case where the nest N is the trivial nest $\{0, I\}$. By Proposition 8, M is also trivial and so ϕ is a Jordan automorphism of $B(H)$. Since $B(H)$ is prime ring, it follows from $[9]$ that ϕ is either an algebraic automorphism or an anti-automorphism. It is well known that automorphisms of $B(H)$ are spatial. This establishes theorem 15 in this case.

In the following, we assume that the nest N is not trivial (i.e. $N_0 \neq \emptyset$). Let Ω be as above. By Lemma 13, we only need to consider two cases.

Case 1. The restriction of ϕ to Ω is multiplicative. Let G be a maximal abelian $*$-subalgebra of $T(N)$. Then G and $\phi(G)$ are maximal abelian in $B(H)$. Hence $\phi(G)$ is norm-closed since the norm closure of $\phi(G)$ is abelian and contains $\phi(G)$. Let φ be the restriction of ϕ to G. Then φ is an isomorphism from the Banach space G onto $\phi(G)$. Thus for each $D \in G$,

$$\sigma(D) = \sigma_G(D) = \sigma_{\phi(G)}(\varphi(D)),$$

where $\sigma(D)$ is the spectrum of D in $B(H)$ and $\sigma_G(D)$ is the spectrum of D in G. Since D is normal, $\|\varphi(D)\| \geq \|D\|$. That is, φ^{-1} is contractive. Hence, by the Open Mapping Theorem, φ is bounded.

Let U be the set of all unitaries in G. Then $\varphi(U)$ is a bounded abelian group of operators. By a result of Dixmier $[11]$ (also see Corollary 17.2 $[3]$), there is an invertible operator T such that $T\varphi(G)T^{-1}$ is a group of unitaries. Since G is spanned by U, it follows that $T\varphi(G)T^{-1}$ is spanned by the abelian unitary group $T\varphi(U)T^{-1}$. Hence $T\varphi(G)T^{-1}$ is an abelian von Neumann algebra. Clearly, it is maximal abelian in $TT(M)T^{-1}$.

For $M \in M$, let P_{TM} be the orthogonal projection onto the range of TM. Let $\mathcal{P}_M = \{P_{TM} : M \in M\}$. Then \mathcal{P}_M is a nest of projections on H and $TT(M)T^{-1} = T(\mathcal{P}_M)$. By Lemma 14, $T\varphi(G)T^{-1}$ is a maximal abelian $*$-subalgebra. Thus $AdT \circ \varphi$ is an algebraic isomorphism between two maximal abelian $*$-subalgebras, where $AdT \circ \varphi$ means that $AdT \circ \varphi(D) = T\varphi(D)T^{-1}$. Therefore there is a unitary operator U such that $AdT \circ \varphi = AdU$ $[5]$ Chapter III, Part 3 $[2]$. Let $S_1 = U^{-1}T$ and $\psi = AdS_1 \circ \phi$. Then ψ is a Jordan isomorphism from $T(N)$ onto $S_1T(N)S_1^{-1}$. Moreover the restriction of ψ to Ω is multiplicative and $\psi(D) = D$ for every $D \in G$.

Since $S_1T(N)S_1^{-1}$ is a nest algebra, by Remark 11, its corresponding nest is $\psi(N) = N$ and hence $S_1T(N)S_1^{-1} = T(N)$. Moreover $\psi(N') = \psi(N)' = N'$ and $\psi(T(N)) = T(N)$ for every $N \in N_0$, so $\psi(\Omega) = \Omega$. Hence the restriction of ψ to Ω, still denoted by ψ, is an isomorphism onto Ω. Since Ω contains all rank-1 operators in $T(N)$, by Theorem 4.1 of $[7]$, there is an invertible operator S_2 such that $\psi(T) = S_2TS_2^{-1}$ for every $T \in \Omega$. Let $S = S_1^{-1}S_2$. Then for every $T \in \Omega$ we
have that \(\phi(T) = STS^{-1} \). In particular, for every \(x \otimes y \) in \(T(N) \), we have that
\[\phi(x \otimes y) = Sx \otimes yS^{-1}. \]

Suppose \(T \in T(N) \). If \(T \) is a scalar multiple of \(I \), then clearly \(\phi(T) = STS^{-1} \).
So we assume that \(T \) is not a scalar multiple of \(I \). Let \(N_1 = \{ N \in N : N \neq 0 \text{ and } N_- < I \} \). Let \(N \) be an arbitrary element in \(N_1 \). Fix a non-zero vector \(y \) in \(N_{-1} \). Then \(x \otimes y \) is in \(T(N) \) for every \(x \in NH \). Hence we have that
\[
STx \otimes yS^{-1} + Sx \otimes yTS^{-1} = \phi(Tx \otimes y + x \otimes yT) \\
= \phi(T)Sx \otimes yS^{-1} + Sx \otimes yS^{-1}\phi(T),
\]
and then there is a scalar \(\lambda(N) \) such that
\[
\phi(T)Sx - STx = \lambda(N)Sx, \quad x \in NH.
\]
For \(N_1 \) and \(N_2 \) in \(N_1 \), we have that
\[
\lambda(N_1)Sx = \phi(T)Sx - STx = \lambda(N_2)Sx, \quad x \in (N_1H) \cap (N_2H),
\]
and consequently \(\lambda(N_1) = \lambda(N_2) \) since \(N_1 < N_2 \) or \(N_1 \geq N_2 \). Thus there is a scalar \(\lambda \) such that
\[
\phi(T)Sx - STx = \lambda Sx
\]
on \(\{ NH : N \in N_1 \} \). But \(\bigvee \{ NH : N \in N_1 \} = H \), so
\[
\phi(T) = STS^{-1} + \lambda.
\]
Now we show that \(\lambda = 0 \). If \(\lambda \neq 0 \), for every rank-1 operator \(x \otimes y \in T(N) \), we have
\[
STx \otimes yTS^{-1} = \phi(Tx \otimes yT) = \phi(T) \phi(x \otimes y) \phi(T) \\
= (\lambda + STS^{-1})Sx \otimes yS^{-1} (\lambda + STS^{-1}) \\
= \lambda^2 Sx \otimes yS^{-1} + \lambda Sx \otimes yTS^{-1} + \lambda STx \otimes yS^{-1} + STx \otimes yTS^{-1}.
\]
Since \(\lambda \neq 0 \), we have that
\[
Tx \otimes y = -x \otimes (\lambda I + T^*)y.
\]
By a similar argument as above, there is a scalar \(\mu \) such that \(ST = \mu S \) and hence \(T = \mu I \) which contradicts the assumption. So \(\lambda = 0 \) and then \(\phi(T) = STS^{-1} \).

Case 2. The restriction of \(\phi \) to \(\Omega \) is anti-multiplicative. Define \(\Phi(T) = \phi(T)^* \).
Then \(\Phi \) is a Jordan isomorphism from \(T(N) \) onto \(T(M^+) \). Since the restriction of \(\phi \) to \(\Omega \) is anti-multiplicative, the restriction of \(\Phi \) to \(\Omega \) is multiplicative. By Case 1, there is an invertible operator \(S \) such that \(\Phi(T) = STS^{-1} \). Thus \(\phi(T) = (S^*)^{-1}T^*S^* \).

Remark 16. As a corollary of Theorem 15, we can conclude another result for Jordan isomorphisms of nest algebras: Every Jordan isomorphism between nest algebras is continuous.

Acknowledgment

The author would like to thank the referee for his very helpful comments and a careful reading of the paper.
Note. After we submitted this paper we became aware of the recent paper [2] which proved that Jordan isomorphisms of triangular matrix algebras over a connected commutative ring are of the form stated above. So our result was covered by [2] for the special case in which the nest algebras under consideration are upper triangular matrix algebras over the complex numbers. In fact, [2] covers the present paper only in this case since the ring considered in [2] must contain no non-trivial idempotents and must be commutative.

References

Department of Mathematics, Suzhou University, Suzhou 215006, People’s Republic of China

E-mail address: fylu@pub.sz.jsinfo.net