Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Sundual characterizations of the translation group of ${\mathbb R}$


Authors: Frances Y. Jackson and W. A. J. Luxemburg
Journal: Proc. Amer. Math. Soc. 131 (2003), 185-199
MSC (1991): Primary 47D03; Secondary 46Exx
DOI: https://doi.org/10.1090/S0002-9939-02-06632-7
Published electronically: May 9, 2002
MathSciNet review: 1929038
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We characterize the first three sundual spaces of ${C_0(\mathbb R)}$, with respect to the translation group of ${\mathbb R}$.


References [Enhancements On Off] (What's this?)

  • [And] Ando, T. Banachverbände und positive Projektionen. Math. Z. 109 (1969), 121-130.
  • [Eb] Eberlein, W.F. Abstract ergodic theorems and weak almost periodic functions. Trans. Amer. Math. Soc. 67 (1949), 217-240. MR 12:112a
  • [Jvn] Van Neerven, Jan. The adjoint of a semigroup of operators. Springer Verlag, Berlin, Heidelberg (1992).
  • [Ka1] Kakutani, S. Concrete representations of abstract M-spaces. Ann. of Math. 42 (1941), 994-1024. MR 3:206a
  • [Ka2] Kakutani, S. Two fixed-point theorems concerning bicompact convex sets. Proc. Imp. Acad. Tokyo 19 (1943), 269-271.
  • [Lux] Luxemburg, W.A.J. Notes on Banach function spaces XV. Indag. Math. 27 (1965) 415-446. MR 32:6202c; MR 32:6202d
  • [LuZ] Luxemburg, W.A.J. and A.C. Zaanen. Riesz spaces I. North-Holland Publishing, Amsterdam, 1971. MR 58:23483
  • [Mar] Markov, A. Quelques théorèmes sur les ensembles abeliens. Doklady Akad. Nauk SSSR (N.S.) 10 (1936), 311-314.
  • [Pag] de Pagter, B. A Wiener-Young type theorem for dual semigroups. Acta. Appl. Math. 27 (1992), 1-2. MR 93j:47059
  • [Phi] Philips, R.S. The adjoint semi-group. Pac. J. Math. 5 (1955), 269-283. MR 17:64a
  • [Pie] Pier, Jean-Paul. Amenable locally compact groups. Pure and Applied Mathematics Series, John Wiley and Sons, New York, 1984. MR 86a:43001
  • [Ple] Plessner, A. Eine Kennzeichnung der totalstetigen Funktionen. Math, J. für Reine und Angew. Math. 60 (1929), 26-32.
  • [Ru] Rudin, W. Functional analysis. McGraw-Hill, New York, 1973. MR 51:1315
  • [Zan] Zaanen, A.C. Riesz spaces II. North-Holland Publishing, Amsterdam, 1983. MR 86b:46001

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 47D03, 46Exx

Retrieve articles in all journals with MSC (1991): 47D03, 46Exx


Additional Information

Frances Y. Jackson
Affiliation: California Institute of Technology, Mathematics 253-37, Pasadena, California 91125-0087

W. A. J. Luxemburg
Affiliation: California Institute of Technology, Mathematics 253-37, Pasadena, California 91125-0087
Email: lux@caltech.edu

DOI: https://doi.org/10.1090/S0002-9939-02-06632-7
Keywords: $C_0$-group, sunduals, translation invariant means, support translation invariant means
Received by editor(s): July 7, 2000
Received by editor(s) in revised form: August 21, 2001
Published electronically: May 9, 2002
Communicated by: David R. Larson
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society