HYPERELLIPTIC JACOBIANS AND SIMPLE GROUPS $U_3(2^m)$

YURI G. ZARHIN

(Communicated by David E. Rohrlich)

Abstract. In a previous paper, the author proved that in characteristic zero the jacobian $J(C)$ of a hyperelliptic curve $C : y^2 = f(x)$ has only trivial endomorphisms over an algebraic closure K_a of the ground field K if the Galois group $\text{Gal}(f)$ of the irreducible polynomial $f(x) \in K[x]$ is either the symmetric group S_n or the alternating group A_n. Here $n > 4$ is the degree of f. In another paper by the author this result was extended to the case of certain “smaller” Galois groups. In particular, the infinite series $n = 2^r + 1, \text{Gal}(f) = \text{PSL}_2(2^r)$ and $n = 2^{4r+2} + 1, \text{Gal}(f) = \text{Sz}(2^{2r+1})$ were treated. In this paper the case of $\text{Gal}(f) = U_3(2^m) := \text{PSU}_3(2^m)$ and $n = 2^{3m} + 1$ is treated.

1. Introduction

In [15] the author proved that in characteristic 0 the jacobian $J(C) = J(C_f)$ of a hyperelliptic curve

$$C = C_f : y^2 = f(x)$$

has only trivial endomorphisms over an algebraic closure K_a of the ground field K if the Galois group $\text{Gal}(f)$ of the irreducible polynomial $f \in K[x]$ is “very big”. Namely, if $n = \deg(f) \geq 5$ and $\text{Gal}(f)$ is either the symmetric group S_n or the alternating group A_n, then the ring $\text{End}(J(C_f))$ of K_a-endomorphisms of $J(C_f)$ coincides with \mathbb{Z}. Later the author [16] proved that $\text{End}(J(C_f)) = \mathbb{Z}$ for an infinite series of $\text{Gal}(f) = \text{PSL}_2(2^r)$ and $n = 2^r + 1$ (with $\dim(J(C_f)) = 2^{r-1}$) or when $\text{Gal}(f)$ is the Suzuki group $\text{Sz}(2^{2r+1})$ and $n = 2^{2(2r+1)} + 1$ (with $\dim(J(C_f)) = 2^{4r+1}$). We refer the reader to [12, 13, 9, 10, 11, 15, 16, 17] for a discussion of known results about, and examples of, hyperelliptic jacobians without complex multiplication.

We write $R = \mathcal{R}_f$ for the set of roots of f and consider $\text{Gal}(f)$ as the corresponding permutation group of \mathcal{R}. Suppose $q = 2^m > 2$ is an integral power of 2 and F_{q^2} is a finite field consisting of q^2 elements. Let us consider a non-degenerate Hermitian (wrt $x \mapsto x^q$) sesquilinear form on $F_{q^2}^3$. In the present paper we prove that

$$\text{End}(J(C_f)) = \mathbb{Z}$$

Received by the editors August 30, 2001.

2000 Mathematics Subject Classification. Primary 14H40; Secondary 14K05.

Key words and phrases. Hyperelliptic jacobians, endomorphisms of abelian varieties, Steinberg representations, unitary groups, Hermitian curves.

This work was partially supported by NSF grant DMS-0070664.
when \(\mathfrak{R}_f\) can be identified with the corresponding “Hermitian curve” of isotropic lines in the projective plane \(\mathbf{P}^2(F_q)\) in such a way that \(\text{Gal}(f)\) becomes either the projective unitary group \(\text{PGU}_3(F_q)\) or the projective special unitary group \(\text{SU}_3(F_q)\). In this case \(n = \deg(f) = q^3 + 1 = 2^{3m} + 1\) and \(\dim(J(C_f)) = q^3/2 = 2^{3m-1}\).

Our proof is based on an observation that the Steinberg representation is the only absolutely irreducible nontrivial representation (up to an isomorphism) over \(F_2\) of \(U_3(2^m)\), whose dimension is a power of 2.

I am deeply grateful to the referee for useful comments.

2. Main results

Throughout this paper we assume that \(K\) is a field with char\((K) \neq 2\). We fix its algebraic closure \(\bar{K}\) and write \(\text{Gal}(K)\) for the absolute Galois group \(\text{Aut}(\bar{K}/K)\). If \(X\) is an abelian variety defined over \(K\), then we write \(\text{End}(X)\) for the ring of \(K\)-endomorphisms of \(X\).

Suppose \(f(x) \in K[x]\) is a separable polynomial of degree \(n \geq 5\). Let \(\mathfrak{R} = \mathfrak{R}_f \subset \bar{K}\) be the set of roots of \(f\), let \(K(\mathfrak{R}_f) = K(\mathfrak{R})\) be the splitting field of \(f\) and let \(\text{Gal}(f) := \text{Gal}(K(\mathfrak{R})/K)\) be the Galois group of \(f\), viewed as a subgroup of \(\text{Perm}(\mathfrak{R})\). Let \(C_f\) be the hyperelliptic curve \(y^2 = f(x)\). Let \(J(C_f)\) be its jacobian, \(\text{End}(J(C_f))\) the ring of \(K\)-endomorphisms of \(J(C_f)\).

Theorem 2.1. Recall that char\((K) \neq 2\). Assume that there exists a positive integer \(m > 1\) such that \(n = 2^{3m} + 1\) and \(\text{Gal}(f)\) contains a subgroup isomorphic to \(U_3(2^m)\). Then either \(\text{End}(J(C_f)) = \mathbb{Z}\) or char\((K) > 0\) and \(J(C_f)\) is a supersingular abelian variety.

Remark 2.2. It would be interesting to find explicit examples of irreducible polynomials \(f(x)\) of degree \(2^{3m} + 1\) with Galois group \(U_3(2^m)\). It follows from results of Belyi \([1]\) that such a polynomial always exists over a certain abelian number field \(K\) (depending on \(m\)). The celebrated Shafarevich conjecture implies that such polynomials must exist over the field \(\mathbb{Q}\) of rational numbers.

We will prove Theorem 2.1 in §5.

3. Permutation groups, permutation modules and very simplicity

Let \(B\) be a finite set consisting of \(n \geq 5\) elements. We write \(\text{Perm}(B)\) for the group of permutations of \(B\). A choice of ordering on \(B\) gives rise to an isomorphism

\[\text{Perm}(B) \cong S_n.\]

Let \(G\) be a subgroup of \(\text{Perm}(B)\). For each \(b \in B\) we write \(G_b\) for the stabilizer of \(b\) in \(G\); it is a subgroup of \(G\). Further we always assume that \(n\) is odd.

Remark 3.1. Assume that the action of \(G\) on \(B\) is transitive. It is well-known that each \(G_b\) is of index \(n\) in \(G\) and all the \(G_b\)’s are conjugate in \(G\). Each conjugate of \(G_b\) in \(G\) is the stabilizer of a point of \(B\). In addition, one may identify the \(G\)-set \(B\) with the set of cosets \(G/G_b\) with the standard action by \(G\).

We write \(F_2^B\) for the \(n\)-dimensional \(F_2\)-vector space of maps \(h : B \to F_2\). The space \(F_2^B\) is provided with a natural action of \(\text{Perm}(B)\) defined as follows. Each
s ∈ Perm(B) sends a map \(h : B \to F_2 \) into \(sh : b \mapsto h(s^{-1}(b)) \). The permutation module \(F_2^B \) contains the Perm(B)-stable hyperplane

\[
Q_B := \{ h : B \to F_2 \mid \sum_{b \in B} h(b) = 0 \}
\]

and the Perm(B)-invariant line \(F \cdot 1_B \) where \(1_B \) is the constant function 1. Since \(n \) is odd, there is a Perm(B)-invariant splitting

\[
F_2^B = Q_B \oplus F_2 \cdot 1_B.
\]

Clearly,

\[
\dim_{F_2}(Q_B) = n - 1
\]

and \(F_2^B \) and \(Q_B \) carry natural structures of \(G \)-modules. Clearly, \(Q_B \) is a faithful \(G \)-module. It is also clear that the \(G \)-module \(Q_B \) can be viewed as the reduction modulo 2 of the \(Q[G] \)-module \((Q_B)^0 := \{ h : B \to Q \mid \sum_{b \in B} h(b) = 0 \} \).

It is well-known that the \(Q[G] \)-module \((Q_B)^0 \) is absolutely simple if and only if the action of \(G \) on \(B \) is doubly transitive ([14], Sect. 2.3, Ex. 2).

Remark 3.2. Assume that \(G \) acts on \(B \) doubly transitively and that

\[
\#(B) - 1 = \dim_{Q}(Q_B^0)
\]

coincides with the largest power of 2 dividing \(\#(G) \). Then it follows from a theorem of Brauer-Nesbitt ([14], Sect. 16.4, pp. 136–137; [7], p. 249) that \(Q_B \) is an absolutely simple \(F_2[G] \)-module. In particular, \(Q_B \) is (the reduction of) the Steinberg representation [7], [3].

We refer to [16] for a discussion of the following definition.

Definition 3.3. Let \(V \) be a vector space over a field \(F \), let \(G \) be a group and \(\rho : G \to \text{Aut}_F(V) \) a linear representation of \(G \) in \(V \). We say that the \(G \)-module \(V \) is very simple if it enjoys the following property:

- If \(R \subset \text{End}_F(V) \) is an \(F \)-subalgebra containing the identity operator \(\text{Id} \) such that

\[
\rho(\sigma)R\rho(\sigma)^{-1} \subset R \quad \forall \sigma \in G,
\]

then either \(R = F \cdot \text{Id} \) or \(R = \text{End}_F(V) \).

Remarks 3.4.

(i) If \(G' \) is a subgroup of \(G \) and the \(G' \)-module \(V \) is very simple, then obviously the \(G \)-module \(V \) is also very simple.

(ii) A very simple module is absolutely simple (see [16], Remark 2.2(iii)).

(iii) If \(\dim_F(V) = 1 \), then obviously the \(G \)-module \(V \) is very simple.

(iv) Assume that the \(G \)-module \(V \) is very simple and \(\dim_F(V) > 1 \). Then \(V \) is not induced from a subgroup \(G \) (except \(G \) itself) and is not isomorphic to a tensor product of two \(G \)-modules, whose \(F \)-dimension is strictly less than \(\dim_F(V) \) (see [16], Example 7.1).

(v) If \(F = F_2 \) and \(G \) is perfect, then properties (ii)-(iv) characterize the very simple \(G \)-modules (see [16], Th. 7.7).
The following statement provides a criterion of very simplicity over \mathbf{F}_2.

Theorem 3.5. Suppose a positive integer $N > 1$ and a group H enjoy the following properties:

- H does not contain a subgroup of index dividing N except H itself.
- Let $N = ab$ be a factorization of N into a product of two positive integers $a > 1$ and $b > 1$. Then either there does not exist an absolutely simple $\mathbf{F}_2[H]$-module of \mathbf{F}_2-dimension a or there does not exist an absolutely simple $\mathbf{F}_2[H]$-module of \mathbf{F}_2-dimension b.

Then each absolutely simple $\mathbf{F}_2[H]$-module of \mathbf{F}_2-dimension N is very simple.

Proof. This is Corollary 7.9 of [16].

4. **Steinberg Representation**

We refer to [7] and [3] for a definition and basic properties of Steinberg representations.

Let us fix an algebraic closure of \mathbf{F}_2 and denote it by \mathcal{F}. We write $\phi: \mathcal{F} \to \mathcal{F}$ for the Frobenius automorphism $x \mapsto x^2$. Let $q = 2^m$ be a positive integral power of two. Then the subfield of invariants of $\phi^m: \mathcal{F} \to \mathcal{F}$ is a finite field \mathbf{F}_q consisting of q elements. Let q' be an integral positive power of q. If d is a positive integer and i is a non-negative integer, then for each matrix $u \in \text{GL}_d(\mathcal{F})$ we write $u^{(i)}$ for the matrix obtained by raising each entry of u to the 2^ith power.

Remark 4.1. Recall that an element $\alpha \in \mathbf{F}_q$ is called primitive if $\alpha \neq 0$ and has multiplicative order $q - 1$ in the cyclic multiplicative group \mathbf{F}_q^*.

Let $M < q - 1$ be a positive integer. Clearly, the set

$$\mu_M(\mathbf{F}_q) = \{ \alpha \in \mathbf{F}_q \mid \alpha^M = 1 \}$$

is a cyclic multiplicative subgroup of \mathbf{F}_q^* and its order M' divides both M and $q - 1$. Since $M < q - 1$ and $q - 1$ is odd, the ratio $(q - 1)/M'$ is an odd integer > 1. This implies that $3 \leq (q - 1)/M'$ and therefore

$$M' = \#(\mu_M(\mathbf{F}_q)) \leq (q - 1)/3.$$

Lemma 4.2. Let $q > 2$, let d be a positive integer and let G be a subgroup of $\text{GL}_d(\mathbf{F}_{q'})$. Assume that one of the following two conditions holds:

(i) There exists an element $u \in G \subset \text{GL}_d(\mathbf{F}_{q'})$, whose trace α lies in \mathbf{F}_q^* and has multiplicative order $q - 1$.

(ii) There exist a positive integer $r > \frac{q - 1}{M'}$, distinct $\alpha_1, \cdots, \alpha_r \in \mathbf{F}_q^*$ and elements

$$u_1, \cdots, u_r \in G \subset \text{GL}_d(\mathbf{F}_{q'})$$

such that the trace of u_i is α_i for all $i = 1, \cdots, r$.

Let $V_0 = \mathcal{F}^d$ and $\rho_0: G \subset \text{GL}_d(\mathbf{F}_{q'}) \subset \text{GL}_d(\mathcal{F}) = \text{Aut}_\mathcal{F}(V_0)$ be the natural d-dimensional representation of G over \mathcal{F}. For each positive integer $i < m$ let us put $V_i := V_0$ and define a d-dimensional \mathcal{F}-representation

$$\rho_i: G \to \text{Aut}(V_i)$$

as the composition of

$$G \hookrightarrow \text{GL}_d(\mathbf{F}_{q'}), \quad x \mapsto x^{(i)}$$
and the inclusion map

\[\text{GL}_d(\mathbb{F}_q') \subset \text{GL}_d(\mathcal{F}) \cong \text{Aut}_{\mathcal{F}}(V_i). \]

Let \(S \) be a subset of \(\{0, 1, \ldots, m-1\} \). Let us define a \(d^{#(S)} \)-dimensional \(\mathcal{F} \)-representation \(\rho_S \) of \(G \) as the tensor product of representations \(\rho_i \) for all \(i \in S \). If \(S \) is a proper subset of \(\{0, 1, \ldots, m-1\} \), then there exists an element \(u \in G \) such that the trace of \(\rho_S(u) \) does not belong to \(\mathbb{F}_2 \). In particular, \(\rho_S \) could not be obtained by extension of scalars to \(\mathcal{F} \) from a representation of \(G \) over \(\mathbb{F}_2 \).

Proof. Clearly,

\[\text{tr}(\rho_i(u)) = \text{tr}(\rho_0(u))^2 \quad \forall u \in G. \]

This implies easily that

\[\text{tr}(\rho_S(u)) = \prod_{i \in S} \text{tr}(\rho_i(u)) = \text{tr}(\rho_0(u))^M \]

where \(M = \sum_{i \in S} 2^i \). Since \(S \) is a proper subset of \(\{0, 1, \ldots, m-1\} \), we have

\[0 < M < \sum_{i=0}^{m-1} 2^i = 2^m - 1 = #(\mathbb{F}_q^*). \]

Assume that condition (i) holds. Then there exists \(u \in G \) such that \(\alpha = \text{tr}(\rho_0(u)) \) lies in \(\mathbb{F}_q \) and the exact multiplicative order of \(\alpha \) is \(q-1 = 2^m - 1 \).

This implies that \(0 \neq \alpha^M \neq 1 \). Since \(\mathbb{F}_2 = \{0, 1\} \), we conclude that \(\alpha^M \notin \mathbb{F}_2 \). Therefore

\[\text{tr}(\rho_S(u)) = \text{tr}(\rho_0(u))^M = \alpha^M \notin \mathbb{F}_2. \]

Now assume that condition (ii) holds. It follows from Remark 4.1 that there exists \(\alpha = \alpha_i \neq 0 \) such that \(\alpha^M \neq 1 \) for some \(i \) with \(1 \leq i \leq r \). This implies that if we put \(u = u_i \), then

\[\text{tr}(\rho_S(u)) = \text{tr}(\rho_0(u))^M = \alpha^M \notin \mathbb{F}_2. \]

\[\square \]

Now, let us put \(q' = q^2 = p^{2m} \). We write \(x \mapsto \bar{x} \) for the involution \(a \mapsto a^q \) of \(\mathbb{F}_q^2 \). Let us consider the special unitary group \(\text{SU}_3(\mathbb{F}_q) \) consisting of all matrices \(A \in \text{SL}_3(\mathbb{F}_q^2) \) which preserve a nondegenerate Hermitian sesquilinear form on \(\mathbb{F}_q^3 \), say,

\[x, y \mapsto x_1y_3 + x_2y_2 + x_3y_1 \quad \forall x = (x_1, x_2, x_3), y = (y_1, y_2, y_3). \]

It is well-known that the conjugacy class of the special unitary group in \(\text{GL}_3(\mathbb{F}_q^2) \) does not depend on the choice of Hermitian form and that \(#(\text{SU}_3(\mathbb{F}_q^2)) = (q^3 + 1)q^2(q^2 - 1) \). Clearly, for each \(\beta \in \mathbb{F}_q^* \) the group \(\text{SU}_3(\mathbb{F}_q) \) contains the diagonal matrix \(u = \text{diag}(\beta, 1, \beta^{-1}) \) with eigenvalues \(\beta, 1, \beta^{-1} \); clearly, the trace of \(u \) is \(\beta + \beta^{-1} + 1 \).

Theorem 4.3. Suppose \(G = \text{SU}_3(\mathbb{F}_q) \). Suppose \(V \) is an absolutely simple nontrivial \(\mathbb{F}_2[G] \)-module. Assume that \(m > 1 \). If \(\dim_{\mathbb{F}_2}(V) \) is a power of 2, then it is equal to \(q^3 \). In particular, \(V \) is the Steinberg representation of \(\text{SU}_3(\mathbb{F}_q) \).
Proof. Recall ([3], p. 77, 2.8.10c) that the adjoint representation of \(G \) in \(\text{End}_{F_{q^2}}(F_{q^2}^3) \) splits into a direct sum of the trivial one-dimensional representation (scalars) and an absolutely simple \(F_{q^2}[G] \)-module \(S_{t_2} \) of dimension 8 (traceless operators). The kernel of the natural homomorphism

\[
G = \text{SU}_3(F_q) \rightarrow \text{Aut}_{F_{q^2}}(S_{t_2}) \cong \text{GL}_8(F_{q^2})
\]

coincides with the center \(Z(G) \) which is either trivial or a cyclic group of order 3 depending on whether \((3, q + 1) = 1 \) or 3. In both cases we get an embedding

\[
G' := G/Z(G) = U_3(q) = \text{PSU}_3(F_q) \subset \text{GL}_8(F_{q^2}).
\]

If \(m = 2 \) (i.e., \(q = 4 \)), then \(G = \text{SU}_3(F_4) = U_3(4) \) and one may use Brauer character tables [8] in order to study absolutely irreducible representations of \(G \) in characteristic 2. Notice ([8], p. 284) that the reduction modulo 2 of the irrational constant \(b_5 \) does not lie in \(F_2 \). Using the table on p. 70 of [8], we conclude that there is only one (up to an isomorphism) absolutely irreducible representation of \(G \) defined over \(F_2 \) and its dimension is 64 = \(q^3 \). This proves the assertion of the theorem in the case of \(m = 2, q = 4 \). So further we assume that

\[
m \geq 3, \quad q = 2^m \geq 8.
\]

Clearly, for each \(u \in G \subset \text{GL}_3(F_{q^2}) \) with trace \(\delta \in F_{q^2} \) the image \(u' \) of \(u \) in \(G' \) has trace \(\delta \delta - 1 \in F_q \). In particular, if \(u = \text{diag}(\beta, 1, \beta^{-1}) \) with \(\beta \in F_{q^2}^* \), then the trace of \(u' \) is

\[
t_\beta := \text{tr}(u') = (1 + \beta + \beta^{-1})(1 + \beta + \beta^{-1}) - 1 = (\beta + \beta^{-1})^2.
\]

Now let us start to vary \(\beta \) in the \(q - 2 \)-element set

\[
F_q \setminus F_2 = F_q^* \setminus \{1\}.
\]

One may easily check that the set of all \(t_\beta \)'s consists of \(\frac{q^3 - 2}{2} \) elements of \(F_q^* \). Since \(q \geq 8 \),

\[
r := \frac{q - 2}{2} > \frac{q - 1}{3}.
\]

This implies that \(G' \subset \text{GL}_8(F_{q^2}) \) satisfies the conditions of Lemma 12 with \(d = 8 \). In particular, none of representations \(\rho_S \) of \(G' \) could be realized over \(F_2 \) if \(S \) is a proper subset of \(\{0, 1, \cdots, m - 1\} \). On the other hand, it is known ([1], p. 77, Example 2.8.10c) that each absolutely irreducible representation of \(G \) over \(F \) either has dimension divisible by 3 or is isomorphic to the representation obtained from some \(\rho_S \) via \(G \rightarrow G' \). The rest is clear.

\[\square\]

Theorem 4.4. Suppose \(m > 1 \) is an integer and let us put \(q = 2^m \). Let \(B \) be a \((q^3 + 1) \)-element set. Let \(H \) be a group acting faithfully on \(B \). Assume that \(H \) contains a subgroup \(G' \) isomorphic to \(U_3(q) \). Then the \(H \)-module \(Q_B \) is very simple.

Proof. First, \(U_3(q) \) is a simple non-abelian group whose order is \(q^3(q^3 + 1)(q^2 - 1)/\nu \) where \(\nu = (3, q + 1) \) is 1 or 3 according to whether \(m \) is even or odd ([2], p. XVI, Table 6; [3], pp. 39–40). Second, notice that \(U_3(q) \subset H \) acts transitively on \(B \). Indeed, the list of maximal subgroups of \(U_3(q) \) ([5], p. 158; see also [3], Th. 6.5.3 and its proof, pp. 329–332) is as follows:
(1) Groups of order \(q^3(q^2 - 1)/\nu\). The preimage of any such group in \(SU_3(F_q)\) leaves invariant a certain one-dimensional subspace in \(F_{q^2}^3\) (the centre of an elation; see [5], pp. 142, 158).

(2) Groups of order \((q + 1)(q^2 - 1)/\nu\).

(3) Groups of order \(6(q + 1)^2/\nu\).

(4) Groups of order \(3(q^2 - q + 1)/\nu\).

(5) \(U_3(2^r)\) where \(r\) is a factor of \(m\) and \(m/r\) is an odd prime.

(6) Groups containing \(U_3(2^r)\) as a normal subgroup of index 3 when \(r\) is odd and \(m = 3r\).

The classification of maximal subgroups of \(U_3(q)\) easily implies that each subgroup of \(U_3(q)\) has index \(\geq q^3 + 1 = \#(B)\) (see also [6], pp. 213–214). This implies that \(U_3(q)\) acts transitively on \(B\). Third, we claim that this action is, in fact, doubly transitive. Indeed, the stabilizer \(U_3(q)_b\) of a point \(b \in B\) has index \(q^3 + 1\) in \(U_3(q)\) and therefore is a maximal subgroup. It follows easily from the same classification that the maximal subgroup \(U_3(q)_b\) (the image of) the stabilizer (in \(SU_3(F_q)\)) of a one-dimensional subspace \(L\) in \(F_{q^2}^3\). The counting arguments easily imply that \(L\) is isotropic. Hence \(U_3(q)_b\) (the image of) the stabilizer of an isotropic line in \(F_{q^2}^3\). Taking into account that the set of isotropic lines in \(F_{q^2}^3\) has cardinality \(q^3 + 1 = \#(B)\), we conclude that \(B = U_3(q)/U_3(q)_b\) is isomorphic (as \(U_3(q)\)-set) to the set of isotropic lines on which \(U_3(q)\) acts doubly transitively and we are done.

By Remark 3.2, the double transitivity implies that the \(F_2[U_3(q)]\)-module \(Q_B\) is absolutely simple. Since \(SU_3(F_q) \to U_3(q)\) is surjective, the corresponding \(F_2[SU_3(F_q)]\)-module \(Q_B\) is also absolutely simple.

Recall that \(\dim_{F_2}(Q_B) = \#(B) - 1 = q^3 = 2^{3m}\). By Theorem 1.3, there are no absolutely simple nontrivial \(F_2[SU_3(F_q)]\)-modules whose dimension strictly divides \(2^{3m}\). This implies that \(Q_B\) is not isomorphic to a tensor product of absolutely simple \(F_2[SU_3(F_q)]\)-modules of dimension > 1. Therefore \(Q_B\) is not isomorphic to a tensor product of absolutely simple \(F_2[U_3(q)]\)-modules of dimension > 1. Recall that all subgroups in \(G' = U_3(q)\) that are different from \(U_3(q)\) itself have index \(\geq q^3 + 1 > q^3 = \dim_{F_2}(Q_B)\). It follows from Theorem 3.5 that the \(G'\)-module \(Q_B\) is very simple. Now the desired very simplicity of the \(H\)-module \(Q_B\) is an immediate corollary of Remark 5.1(i).

5. PROOF OF THEOREM 2.1

Recall that \(\text{Gal}(f) \subset \text{Perm}(\mathfrak{R})\). It is also known that the natural homomorphism \(\text{Gal}(K) \to \text{Aut}_{F_2}(J(C)_2)\) factors through the canonical surjection \(\text{Gal}(K) \to \text{Gal}(K(\mathfrak{R})/K) = \text{Gal}(f)\), and the \(\text{Gal}(f)\)-modules \(J(C)_2\) and \(Q_{\mathfrak{R}}\) are isomorphic (see, for instance, Th. 5.1 of [16]). In particular, if the \(\text{Gal}(f)\)-module \(Q_{\mathfrak{R}}\) is very simple, then the \(\text{Gal}(f)\)-module \(J(C)_2\) is also very simple and therefore is absolutely simple.

Lemma 5.1. If the \(\text{Gal}(f)\)-module \(Q_{\mathfrak{R}}\) is very simple, then either \(\text{End}(J(C)_f) = \mathbb{Z}\) or \(\text{char}(K) > 0\) and \(J(C)_f\) is a supersingular abelian variety.

Proof. This is Corollary 5.3 of [10].

It follows from Theorem 3.4 that under the assumptions of Theorem 2.1, the \(\text{Gal}(f)\)-module \(Q_{\mathfrak{R}}\) is very simple. Applying Lemma 5.1, we conclude that either \(\text{End}(J(C)_f) = \mathbb{Z}\) or \(\text{char}(K) > 0\) and \(J(C)_f\) is a supersingular abelian variety.
REFERENCES

5. R. W. Hartley, Determination of the ternary collineation groups whose coefficients lie in the GF(2^n). Ann. of Math. 27 (1926), 140–158.

Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802
E-mail address: zarhin@math.psu.edu