Randomised circular means of Fourier transforms of measures

Authors:
Jonathan M. Bennett and Ana Vargas

Journal:
Proc. Amer. Math. Soc. **131** (2003), 117-127

MSC (2000):
Primary 42B10

DOI:
https://doi.org/10.1090/S0002-9939-02-06696-0

Published electronically:
August 19, 2002

MathSciNet review:
1929031

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We explore decay estimates for circular means of the Fourier transform of a measure on in terms of its -dimensional energy. We find new upper bounds for the decay exponent. We also prove sharp estimates for a certain family of randomised versions of this problem.

**1.**J. A. Barceló,*Tesis Doctoral*, Universidad Autónoma de Madrid, 1988.**2.**J. A. Barceló, J. M. Bennett, A. Carbery,*A bilinear extension estimate in two dimensions*, preprint (2001).**3.**J. A. Barceló, A. Ruiz, L. Vega,*Weighted estimates for the Helmholtz equation and consequences*, JFA Vol. 150 (1997), 2, 356-382. MR**99a:35033****4.**J. Bourgain,*Hausdorff dimension and distance sets*, Israel J. Math. 87 (1994), 193-201. MR**95h:28008****5.**A. Carbery, F. Soria,*Pointwise Fourier inversion and localisation in*, Journal of Fourier Analysis and Applications 3, special issue, 847-858 (1997). MR**99c:42018****6.**A. Carbery, F. Soria, A. Vargas,*preprint*.**7.**A. Córdoba,*The Kakeya Maximal Functions and the Spherical Summation Multipliers*, Am. J. Math. 99 (1977), 1-22. MR**56:6259****8.**N. H. Katz, T. Tao,*Some connections between Falconer's distance set conjecture, and sets of Furstenburg type*, New York J. Math. 7 (2001), 149-187.**9.**P. Mattila,*Geometry of Sets and Measures in Euclidean Spaces*, Cambridge Studies in Advanced Mathematics 44. MR**96h:28006****10.**P. Mattila,*Spherical averages of Fourier transforms of measures with finite energy; dimensions of intersections and distance sets*, Mathematika 34 (1987), 207-228. MR**90a:42009****11.**P. Sjölin,*Estimates of spherical averages of Fourier transforms and dimensions of sets*, Mathematika 40 (1993), 322-330. MR**95f:28007****12.**G. N. Watson,*A Treatise on the Theory of Bessel Functions*, Cambridge University Press, 1944. MR**6:64a****13.**T. H. Wolff,*Decay of circular means of Fourier transforms of measures*, Internat. Math. Res. Notices 10 (1999), 547-567. MR**2000k:42016****14.**T. H. Wolff,*Recent work connected with the Kakeya problem*, Prospects in mathematics (Princeton, NJ, 1996), 129-162, Amer. Math. Soc., Providence, RI, 1999. MR**2000d:42010**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
42B10

Retrieve articles in all journals with MSC (2000): 42B10

Additional Information

**Jonathan M. Bennett**

Affiliation:
Department of Mathematics, University Autonoma de Madrid, 28049 Madrid, Spain

Email:
jonathan.bennett@uam.es

**Ana Vargas**

Affiliation:
Department of Mathematics, University Autonoma de Madrid, 28049 Madrid, Spain

Email:
ana.vargas@uam.es

DOI:
https://doi.org/10.1090/S0002-9939-02-06696-0

Keywords:
Fourier transforms,
circular means,
$\alpha$-energy

Received by editor(s):
April 27, 2001

Published electronically:
August 19, 2002

Communicated by:
Andreas Seeger

Article copyright:
© Copyright 2002
American Mathematical Society