Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Vojta's Main Conjecture for blowup surfaces


Author: David McKinnon
Journal: Proc. Amer. Math. Soc. 131 (2003), 1-12
MSC (2000): Primary 11G05, 11G35, 14G05, 14G40
Published electronically: August 19, 2002
MathSciNet review: 1929015
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we prove Vojta's Main Conjecture for split blowups of products of certain elliptic curves with themselves. We then deduce from the conjecture bounds on the average number of rational points lying on curves on these surfaces, and expound upon this connection for abelian surfaces and rational surfaces.


References [Enhancements On Off] (What's this?)

  • [Ba] Alan Baker, Transcendental number theory, Cambridge University Press, London-New York, 1975. MR 0422171
  • [EE] B. Edixhoven and J.-H. Evertse (eds.), Diophantine approximation and abelian varieties, Lecture Notes in Mathematics, vol. 1566, Springer-Verlag, Berlin, 1993. Introductory lectures; Papers from the conference held in Soesterberg, April 12–16, 1992. MR 1288998
  • [Fa] Gerd Faltings, Diophantine approximation on abelian varieties, Ann. of Math. (2) 133 (1991), no. 3, 549–576. MR 1109353, 10.2307/2944319
  • [Fu] William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323
  • [GH] Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978. Pure and Applied Mathematics. MR 507725
  • [H] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
  • [KO] Shoshichi Kobayashi and Takushiro Ochiai, Mappings into compact manifolds with negative first Chern class, J. Math. Soc. Japan 23 (1971), 137–148. MR 0288316
  • [La] Serge Lang, Elliptic curves: Diophantine analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 231, Springer-Verlag, Berlin-New York, 1978. MR 518817
  • [Sch] Stephen Hoel Schanuel, Heights in number fields, Bull. Soc. Math. France 107 (1979), no. 4, 433–449 (English, with French summary). MR 557080
  • [Se] Jean-Pierre Serre, Lectures on the Mordell-Weil theorem, Aspects of Mathematics, E15, Friedr. Vieweg & Sohn, Braunschweig, 1989. Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt. MR 1002324
  • [Si] Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210
    Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1992. Corrected reprint of the 1986 original. MR 1329092
  • [Vo] Paul Vojta, Diophantine approximations and value distribution theory, Lecture Notes in Mathematics, vol. 1239, Springer-Verlag, Berlin, 1987. MR 883451

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11G05, 11G35, 14G05, 14G40

Retrieve articles in all journals with MSC (2000): 11G05, 11G35, 14G05, 14G40


Additional Information

David McKinnon
Affiliation: Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
Email: dmckinnon@math.uwaterloo.ca

DOI: http://dx.doi.org/10.1090/S0002-9939-02-06784-9
Keywords: Vojta's conjecture, heights, rational points, elliptic curves
Received by editor(s): June 22, 2001
Published electronically: August 19, 2002
Communicated by: David E. Rohrlich
Article copyright: © Copyright 2002 American Mathematical Society