EXPOSED 2-HOMOGENEOUS POLYNOMIALS
ON HILBERT SPACES

SUNG GUEN KIM AND SANG HUN LEE

Abstract. We show that every extreme point of the unit ball of 2-homogeneous polynomials on a separable real Hilbert space is its exposed point and that the unit ball of 2-homogeneous polynomials on a non-separable real Hilbert space contains no exposed points. We also show that the unit ball of 2-homogeneous polynomials on any infinite dimensional real Hilbert space contains no strongly exposed points.

We recall that a unit vector \(x \) in a real Banach space \(E \) is exposed if there is a unit vector \(f \in E^* \) so that \(f(x) = 1 \) and \(f(y) < 1 \) for each \(y \in B_E \) with \(y \neq x \), where \(B_E \) is the closed unit ball of \(E \). It is easy to see that every exposed point of \(B_E \) is an extreme point. A unit vector \(x \) in a real Banach space \(E \) is strongly exposed if there is a unit vector \(f \in E^* \) so that \(f(x) = 1 \) and given any sequence \((x_k)\) in \(B_E \) with \(f(x_k) \to 1 \) we can conclude that \(x_k \to x \) in norm. It is easy to see that every strongly exposed point of \(B_E \) is its exposed point. We denote by \(\text{ext} B_E, \text{exp} B_E \) and \(\text{sexp} B_E \) the sets of extreme points, exposed points and strongly exposed points of \(B_E \), respectively.

Let \(\mathcal{P}^2(H) \) be the Banach space of continuous 2-homogeneous polynomials on a real Hilbert space \(H \). Recently many authors (see [1]-[7]) studied extremal problems for polynomials on a Banach space. The extreme points of the unit ball of this space has been characterized by Grecu [6]. The object of this note is to determine the exposed and strongly exposed points of the unit ball of \(\mathcal{P}^2(H) \). Grecu showed that for a real Hilbert space \(H \), \(P \in \text{ext} \mathcal{P}^2(H) \) if and only if there exists an orthogonal decomposition of \(H = H_1 \oplus H_2 \) such that \(P(x) = \|\pi_1(x)\|^2 - \|\pi_2(x)\|^2 \), where \(\pi_j : H \to H_j \) are the orthogonal projections of \(H \) onto \(H_j \) \((j = 1, 2) \). Using this result we show the following results:

1. If \(H \) is a separable real Hilbert space, then every extreme point of the unit ball of \(\mathcal{P}^2(H) \) is exposed.

2. If \(H \) is a non-separable real Hilbert space, then the unit ball of \(\mathcal{P}^2(H) \) contains no exposed points.

3. If \(H \) is an infinite dimensional real Hilbert space, then the unit ball of \(\mathcal{P}^2(H) \) contains no strongly exposed points.

Received by the editors January 15, 2001 and, in revised form, September 10, 2001.
2000 Mathematics Subject Classification. Primary 46B20, 46E15.
The first author wishes to acknowledge the financial support of the Korea Research Foundation (KRF-2000-015-DP0012).
The second author wishes to acknowledge the financial support by KOSEF research No. (2001-1-10100-007).

©2002 American Mathematical Society
Theorem 1. Let H be a separable real Hilbert space. Then every extreme point of the unit ball of $P(2H)$ is exposed.

Proof. Since $\exp B_{P(2H)} \subset \text{ext} B_{P(2H)}$, it suffices to show that if $P \in \text{ext} B_{P(2H)}$, then $P \in \exp B_{P(2H)}$.

Let $P \in \text{ext} B_{P(2H)}$. By Theorem 1.6 of [6], $P(x) = \|\pi_1(x)\|^2 - \|\pi_2(x)\|^2$ where $H = H_1 \oplus H_2$ and $\pi_j : H \to H_j$ are the orthogonal projections of H onto H_j $(j = 1, 2)$. Clearly $\|\pi_j\| = 1$. Let $\{e_\alpha\}_{\alpha \in A}$ and $\{t_\beta\}_{\beta \in B}$ be orthonormal bases of H_1 and H_2, respectively. It is clear that $\{e_\alpha, t_\beta\}_{\alpha \in A, \beta \in B}$ is an orthonormal basis of H.

Then for each $x \in H$, we have

$$x = \sum_{\alpha \in A} \langle x, e_\alpha \rangle e_\alpha + \sum_{\beta \in B} \langle x, t_\beta \rangle t_\beta$$

and

$$P(x) = \sum_{\alpha \in A} \langle x, e_\alpha \rangle^2 - \sum_{\beta \in B} \langle x, t_\beta \rangle^2.$$

Note that $P(e_\alpha) = 1$ for all $\alpha \in A$ and $P(t_\beta) = -1$ for all $\beta \in B$. Let $\{a_\alpha\}_{\alpha \in A}$ and $\{b_\beta\}_{\beta \in B}$ be collections of reals such that $a_\alpha > 0, b_\beta < 0$ and

$$\sum_{\alpha \in A} a_\alpha - \sum_{\beta \in B} b_\beta = 1.$$

Define $f \in P(2H)^*$ such that for each $Q \in P(2H)$,

$$f(Q) = \sum_{\alpha \in A} Q(e_\alpha)a_\alpha + \sum_{\beta \in B} Q(t_\beta)b_\beta.$$

Then $\|f\| = 1$. Indeed, for each $Q \in P(2H)$ with $\|Q\| = 1$, we have $|Q(e_\alpha)| \leq 1$ for all $\alpha \in A, |Q(t_\beta)| \leq 1$ for all $\beta \in B$ and

$$|f(Q)| \leq \sum_{\alpha \in A} |Q(e_\alpha)|a_\alpha + \sum_{\beta \in B} |Q(t_\beta)|(-b_\beta) \leq \sum_{\alpha \in A} 1 \cdot a_\alpha - \sum_{1 \cdot \beta \in B} b_\beta = 1$$

and

$$f(P) = \sum_{\alpha \in A} P(e_\alpha)a_\alpha + \sum_{\beta \in B} P(t_\beta)b_\beta = \sum_{\alpha \in A} 1 \cdot a_\alpha - \sum_{\beta \in B} 1 \cdot b_\beta = 1.$$

We will show that this functional f exposes the polynomial P.

Let $Q \in P(2H)$ be such that $f(Q) = \|Q\|$. We claim that $Q(e_\alpha) = 1$ for all $\alpha \in A$ and $Q(t_\beta) = -1$ for all $\beta \in B$. Indeed,

$$1 = f(Q) = \sum_{\alpha \in A} Q(e_\alpha)a_\alpha + \sum_{\beta \in B} Q(t_\beta)b_\beta = \sum_{\alpha \in A} 1 \cdot a_\alpha - \sum_{\beta \in B} 1 \cdot b_\beta = 1,$$

so $Q(e_\alpha) = 1$ for all $\alpha \in A$ and $Q(t_\beta) = -1$ for all $\beta \in B$ because of $a_\alpha > 0, b_\beta < 0$.

Let Q be the corresponding continuous symmetric bilinear form to the polynomial Q.

We claim:

1. $Q(e_\alpha, e_{\alpha'}) = 0$ $(\alpha \neq \alpha' \in A)$;
2. $Q(t_\beta, t_{\beta'}) = 0$ $(\beta \neq \beta' \in B)$;
3. $Q(e_\alpha, t_\beta) = 0$ $(\alpha \in A, \beta \in B)$.
Proof of (1). It follows that
\[1 = \|Q\| \geq \sup_{x^2 + x_0^2 = 1} |Q(x_\alpha e_\alpha + x_{\alpha'} e_{\alpha'})| \]
\[= \sup_{x^2 + x_0^2 = 1} |\hat{Q}(x_\alpha e_\alpha + x_{\alpha'} e_{\alpha''), x_\alpha e_\alpha + x_{\alpha'} e_{\alpha''})| \]
\[= \sup_{x^2 + x_0^2 = 1} |Q(e_\alpha) x^2_\alpha + Q(e_{\alpha'}) x^2_{\alpha'} + 2\hat{Q}(e_\alpha, e_{\alpha'}) x_\alpha x_{\alpha'}| \]
\[= \sup_{x^2 + x_0^2 = 1} |x^2_\alpha + x^2_{\alpha'} + 2\hat{Q}(e_\alpha, e_{\alpha'}) x_\alpha x_{\alpha'}| \]
\[= \sup_{x^2 + x_0^2 = 1} |1 + 2\hat{Q}(e_\alpha, e_{\alpha'}) x_\alpha x_{\alpha'}| \]
which implies \(\hat{Q}(e_\alpha, e_{\alpha'}) = 0 \).

Proof of (2). By the similar proof of (1), we have
\[1 = \|Q\| \geq \sup_{x^2 + x_0^2 = 1} |Q(x_\beta t_\beta + x_{\beta'} t_{\beta'})| = \sup_{x^2 + x_0^2 = 1} |1 + 2\hat{Q}(t_\beta, t_{\beta'}) x_\beta x_{\beta'}| \]
which implies \(\hat{Q}(t_\beta, t_{\beta'}) = 0 \).

Proof of (3). By the similar proof of (1), we have
\[1 = \|Q\| \geq \sup_{x^2 + x_0^2 = 1} |Q(x_\alpha e_\alpha + x_\beta t_\beta)| \]
\[= \sup_{x^2 + x_0^2 = 1} |Q(e_\alpha) x^2_\alpha + Q(t_\beta) x^2_\beta + 2\hat{Q}(e_\alpha, t_\beta) x_\alpha x_\beta| \]
\[= \sup_{x^2 + x_0^2 = 1} |x^2_\alpha - x^2_\beta + 2\hat{Q}(e_\alpha, t_\beta) x_\alpha x_\beta| .\]

By Lemma 2.1 of [3], we have \(\hat{Q}(e_\alpha, t_\beta) = 0 \). For \(x \in H \), it follows that
\[Q(x) = \hat{Q}(x, x) \]
\[= \hat{Q}\left(\sum_{\alpha \in A} \langle x, e_\alpha \rangle e_\alpha + \sum_{\beta \in B} \langle x, t_\beta \rangle t_\beta, \sum_{\alpha \in A} \langle x, e_\alpha \rangle e_\alpha + \sum_{\beta \in B} \langle x, t_\beta \rangle t_\beta\right) \]
\[= \sum_{\alpha, \alpha' \in A} \langle x, e_\alpha \rangle \langle x, e_{\alpha'} \rangle \hat{Q}(e_\alpha, e_{\alpha'}) + \sum_{\beta, \beta' \in B} \langle x, t_\beta \rangle \langle x, t_{\beta'} \rangle \hat{Q}(t_\beta, t_{\beta'}) \]
\[+ 2 \sum_{\alpha \in A, \beta \in B} \langle x, e_\alpha \rangle \langle x, t_\beta \rangle \hat{Q}(e_\alpha, t_\beta) \]
\[= \sum_{\alpha \in A} Q(e_\alpha) \langle x, e_\alpha \rangle^2 + \sum_{\beta \in B} Q(t_\beta) \langle x, t_\beta \rangle^2 \quad \text{(by claims (1)-(3))} \]
\[= \sum_{\alpha \in A} \langle x, e_\alpha \rangle^2 - \sum_{\beta \in B} \langle x, t_\beta \rangle^2 = P(x), \]
showing that \(f \) exposes \(P \). Therefore \(P \in \exp B_{\mathcal{P}(2^H)} \).

Theorem 2. Let \(H \) be an infinite dimensional real Hilbert space. Then the unit ball of \(\mathcal{P}(2^H) \) contains no strongly exposed points.

Proof. Since \(\sexp B_{\mathcal{P}(2^H)} \subset \ext B_{\mathcal{P}(2^H)} \), it suffices to show that
\[\sexp B_{\mathcal{P}(2^H)} \cap \ext B_{\mathcal{P}(2^H)} = \emptyset. \]
Let $P \in \operatorname{ext}B_{\mathcal{P}(2H)}$. By Theorem 1.6 of [6] $P(x) = \|\pi_1(x)\|^2 - \|\pi_2(x)\|^2$ where $H = H_1 \oplus H_2$ and $\pi_j : H \to H_j$ are the orthogonal projections of H onto H_j \((j = 1, 2)\). Clearly $\|\pi_j\| = 1$. Without loss of generality, assume that $\dim(H_1) = \infty$.

Let \(\{e\alpha\}_{\alpha \in A}\) be an orthonormal basis of H_1. Let \(\{\alpha_j\}_{j = 1}^\infty \subset A\). It is clear that for each $x \in H$, we have $\pi_1(x) = \sum_{\alpha \in A} \langle \pi_1(x), e\alpha \rangle e\alpha$. Then

$$P(x) = \sum_{\alpha \in A} \langle \pi_1(x), e\alpha \rangle^2 - \|\pi_2(x)\|^2.$$

Suppose that $P \in \text{sexp}B_{\mathcal{P}(2H)}$. Then there is an $f \in \mathcal{P}(2H)^*$ such that $\|f\| = 1 = f(P)$ and given any sequence \(\{P_j\}\) in $B_{\mathcal{P}(2H)}$ with $f(P_j) \to 1$, we have $\|P_j - P\| \to 0$.

For each α_j, we have

$$f\left(\sum_{\alpha \neq \alpha_j} \langle \pi_1(x), e\alpha \rangle^2 - \langle \pi_1(x), e\alpha_j \rangle^2 - \|\pi_2(x)\|^2\right) < 1$$

so $f(\langle \pi_1(x), e\alpha_j \rangle^2) > 0$. We will show $f(\langle \pi_1(x), e\alpha_j \rangle^2) \to 0$ as $j \to \infty$. For each n,

$$\sum_{1 \leq j \leq n} f(\langle \pi_1(x), e\alpha_j \rangle^2) = f\left(\sum_{1 \leq j \leq n} \langle \pi_1(x), e\alpha_j \rangle^2\right)$$

$$\leq \|f\| \sum_{1 \leq j \leq n} \|\langle \pi_1(x), e\alpha_j \rangle\|^2 = \|f\| \sum_{1 \leq j \leq n} \|\langle \pi_1(x), e\alpha_j \rangle\|^2$$

$$= \sup_{\|x\| = 1} \sum_{1 \leq j \leq n} \|\langle \pi_1(x), e\alpha_j \rangle\|^2 = \sup_{\|x\| = 1} \|\pi_1(x)\|^2 = \|\pi_1\|^2 = 1.$$

Thus $\sum_{1 \leq j < \infty} f(\langle \pi_1(x), e\alpha_j \rangle^2) \leq 1$, so we have $f(\langle \pi_1(x), e\alpha_j \rangle^2) \to 0$.

Define $P_j(x) = P(x) - \langle \pi_1(x), e\alpha_j \rangle^2 \in \mathcal{P}(2H)$. Then $\|P_j\| = 1$ and $|f(P_j) - 1| = |f(P_j - P)| = f(\langle \pi_1(x), e\alpha_j \rangle^2) \to 0$. But

$$\|P_j - P\| = \|\langle \pi_1(x), e\alpha_j \rangle^2\| = \sup_{\|x\| = 1} \|\pi_1(x)\|^2 = \|\pi_1\|^2 = 1,$$

so we have a contradiction. Thus $\text{sexp}B_{\mathcal{P}(2H)} = \emptyset$.

Theorem 3. Let H be non-separable real Hilbert space. Then the unit ball of $\mathcal{P}(2H)$ contains no exposed points.

Proof. Let P be an extreme point, so that

$$P(x) = \sum_{\alpha \in A} \langle x, t\alpha \rangle^2 - \sum_{\beta \in B} \langle x, t\beta \rangle^2$$

relative to a suitably chosen orthonormal basis whose indexing set is the disjoint union $A \cup B$. Suppose that the functional f exposes P. As in the proof of Theorem 2 it follows that $f(\langle x, e\alpha \rangle^2) > 0$ for every $\alpha \in A$ and similarly, $f(\langle x, e\alpha \rangle^2) < 0$ for every $\alpha \in B$. But

$$\sum_{\alpha \in A} f(\langle x, t\alpha \rangle^2) = f\left(\sum_{\alpha \in A} \langle x, t\alpha \rangle^2\right) \leq 1,$$

and hence A must be countable. Similarly, B is countable. Thus H is separable.
Acknowledgement

The authors wish to thank the referee for pointing out Theorem 3 and several useful remarks.

References

[4] Y.S. Choi and S.G. Kim, Exposed points of the unit balls of $P^{(2)}_p$ ($p = 1, 2, \infty$), (Preprint).

Department of Mathematics, Kyungpook National University, Daegu, Korea (702-701)

E-mail address: sgk317@knu.ac.kr

Department of Mathematics, Kyungpook National University, Daegu, Korea (702-701)

E-mail address: sanghlee@knu.ac.kr