Endpoint estimates for certain commutators of fractional and singular integrals

Authors:
Shanzhen Lu and Qiang Wu

Journal:
Proc. Amer. Math. Soc. **131** (2003), 467-477

MSC (2000):
Primary 42B20; Secondary 47B38, 47A30, 42B30, 42B35

Published electronically:
May 17, 2002

MathSciNet review:
1933338

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, the authors obtain the endpoint estimates for a class of non-standard commutators with higher order remainders and their variants. Moreover, the authors show that these operators are actually not bounded in certain cases.

**[1]**B. Bajšanski and R. Coifman,*On singular integrals*, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) Amer. Math. Soc., Providence, R.I., 1967, pp. 1–17. MR**0238129****[2]**A.-P. Calderón,*Algebras of singular integral operators*, Singular integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966), Amer. Math. Soc., Providence, R.I., 1967, pp. 18–55. MR**0394309****[3]**W. Chen and G. Hu, Weak type ( ) estimate for a multilinear singular integral operator, Adv. in Math.,**30:1**(2001), 63-69. CMP**2001:12****[4]**Jonathan Cohen and John Gosselin,*A BMO estimate for multilinear singular integrals*, Illinois J. Math.**30**(1986), no. 3, 445–464. MR**850342****[5]**Eleonor Harboure, Carlos Segovia, and José L. Torrea,*Boundedness of commutators of fractional and singular integrals for the extreme values of 𝑝*, Illinois J. Math.**41**(1997), no. 4, 676–700. MR**1468874****[6]**Steve Hofmann,*On certain nonstandard Calderón-Zygmund operators*, Studia Math.**109**(1994), no. 2, 105–131. MR**1269771****[7]**Guo En Hu and Da Chun Yang,*Multilinear oscillatory singular integral operators on Hardy spaces*, Chinese Ann. Math. Ser. A**18**(1997), no. 5, 569–578 (Chinese, with Chinese summary); English transl., Chinese J. Contemp. Math.**18**(1997), no. 4, 403–413 (1998). MR**1485336****[8]**Elias M. Stein,*Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals*, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR**1232192****[9]**Q. Wu and D. Yang, On fractional multilinear singular integrals, Math. Nachr. to appear.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
42B20,
47B38,
47A30,
42B30,
42B35

Retrieve articles in all journals with MSC (2000): 42B20, 47B38, 47A30, 42B30, 42B35

Additional Information

**Shanzhen Lu**

Affiliation:
Department of Mathematics, Beijing Normal University, Beijing 100875, People’s Republic of China

Email:
lusz@bnu.edu.cn

**Qiang Wu**

Affiliation:
Department of Mathematics, Beijing Normal University, Beijing 100875, People’s Republic of China

DOI:
http://dx.doi.org/10.1090/S0002-9939-02-06548-6

Keywords:
Commutator,
Hardy space,
BMO,
atom

Received by editor(s):
May 2, 2001

Received by editor(s) in revised form:
September 12, 2001

Published electronically:
May 17, 2002

Additional Notes:
This project was supported by the National 973 Foundation of China

Communicated by:
Andreas Seeger

Article copyright:
© Copyright 2002
American Mathematical Society