On the boundedness of Hamiltonian operators
Authors:
Tomas Ya. Azizov, Aad Dijksma and Irina V. Gridneva
Journal:
Proc. Amer. Math. Soc. 131 (2003), 563576
MSC (2000):
Primary 47B50, 46C20, 47B44, 47B25
Published electronically:
May 29, 2002
MathSciNet review:
1933348
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We show that a nonnegative Hamiltonian operator whose domain contains a maximal uniformly positive subspace is bounded.
 [AI]
T.
Ya. Azizov and I.
S. Iokhvidov, Linear operators in spaces with an indefinite
metric, Pure and Applied Mathematics (New York), John Wiley &
Sons, Ltd., Chichester, 1989. Translated from the Russian by E. R. Dawson;
A WileyInterscience Publication. MR 1033489
(90j:47042)
 [AKK]
T.YA. AZIZOV, V.K. KIRIAKIDI, AND G.A. KURINA, An indefinite approach to the reduction of a nonnegative Hamiltonian operator function to a block diagonal form, Funct. Anal. and Appl., 35 (3), 2001, 7375 (Russian).
 [B]
M.
L. Brodskiĭ, On properties of an operator mapping the
nonnegative part of a space with indefinite metric into itself,
Uspehi Mat. Nauk 14 (1959), no. 1 (85), 147–152
(Russian). MR
0106413 (21 #5145)
 [DR]
Michael
A. Dritschel and James
Rovnyak, Extension theorems for contraction operators on
Kreĭn spaces, Extension and interpolation of linear operators
and matrix functions, Oper. Theory Adv. Appl., vol. 47,
Birkhäuser, Basel, 1990, pp. 221–305. MR 1120277
(92m:47068)
 [KL]
M.
G. Kreĭn and H.
Langer, On some mathematical principles in the linear theory of
damped oscillations of continua. I, Integral Equations Operator Theory
1 (1978), no. 3, 364–399. Translated from the
Russian by R. Troelstra. MR 511976
(80d:47026), http://dx.doi.org/10.1007/BF01682844
M.
G. Kreĭn and H.
Langer, On some mathematical principles in the linear theory of
damped oscillations of continua. II, Integral Equations Operator
Theory 1 (1978), no. 4, 539–566. Translated
from the Russian by R. Troelstra. MR 516767
(80h:47022), http://dx.doi.org/10.1007/BF01682940
 [L1]
Heinz
Langer, Zur Spektraltheorie 𝐽selbstadjungierter
Operatoren, Math. Ann. 146 (1962), 60–85
(German). MR
0138002 (25 #1450)
 [L2]
Heinz
Langer, Eine Verallgemeinerung eines Satzes von L. S.
Pontrjagin, Math. Ann. 152 (1963), 434–436
(German). MR
0158266 (28 #1492)
 [LT]
Heinz
Langer and Christiane
Tretter, Spectral decomposition of some nonselfadjoint block
operator matrices, J. Operator Theory 39 (1998),
no. 2, 339–359. MR 1620503
(99d:47004)
 [S]
A.
A. Shkalikov, On the existence of invariant subspaces of
dissipative operators in a space with an indefinite metric, Fundam.
Prikl. Mat. 5 (1999), no. 2, 627–635 (Russian,
with English and Russian summaries). MR 1803604
(2001k:47051)
 [Shm]
YU.L. SHMUL'YAN, Division in the class of expansive operators, Mat. Sb. (N.S.) 74 (116), 1967, 516525 (Russian); English transl.: Math. USSRSbornik 3, 1967, 471479.
 [AI]
 T.YA. AZIZOV AND I.S. IOKHVIDOV, Foundations of the theory of linear operators in spaces with an indefinite metric, Nauka, Moscow, 1986 (Russian); English transl.: Linear operators in spaces with an indefinite metric, Wiley, New York, 1989. MR 90j:47042
 [AKK]
 T.YA. AZIZOV, V.K. KIRIAKIDI, AND G.A. KURINA, An indefinite approach to the reduction of a nonnegative Hamiltonian operator function to a block diagonal form, Funct. Anal. and Appl., 35 (3), 2001, 7375 (Russian).
 [B]
 M.L. Brodskii, On the properties of an operator mapping into itself the nonnegative part of a space with an indefinite metric, Uspekhi Mat. Naut 14 (1), 1959, 147152 (Russian). MR 21:5145
 [DR]
 M.A. DRITSCHEL, J. ROVNYAK, Extension theorems for contraction operators on Krein spaces, Operator Theory: Adv. Appl., vol. 47, Birkhäuser Verlag, Basel, 1990, 221305. MR 92m:47068
 [KL]
 M.G. KREIN AND H. LANGER, On some mathematical principles in the linear theory of damped oscillations of continua, Proc. Int. Sympos. on Applications of the Theory of Functions in Continuum Mechanics, Tbilisi, 1963, Vol. II: Fluid and Gas Mechanics, Math. Methods, Moscow, 1965, 283322 (Russian); English transl.: Integral Equations Operator Theory 1, 1978, 364399 and 539566. MR 80d:47026; MR 80h:47022
 [L1]
 H. LANGER, Zur Spektraltheorie selbstadjungierter Operatoren, Math. Ann. 146 (1), 1962, 6085. MR 25:1450
 [L2]
 H. LANGER, Eine Verallgemeinerung eines Satzes von L.S. Pontrjagin, Math. Ann. 152 (5), 1963, 434436. MR 28:1492
 [LT]
 H. LANGER AND CHR. TRETTER, Spectral decomposition of some nonselfadjoint block operator matrices, J. of Operator Theory 39, 1998, 339359. MR 99d:47004
 [S]
 A.A. SHKALIKOV, On the existence of invariant subspaces of dissipative operators in an inner product space, Fund. and Appl. Math. 5 (2), 1999, 627635 (Russian). MR 2001k:47051
 [Shm]
 YU.L. SHMUL'YAN, Division in the class of expansive operators, Mat. Sb. (N.S.) 74 (116), 1967, 516525 (Russian); English transl.: Math. USSRSbornik 3, 1967, 471479.
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
47B50,
46C20,
47B44,
47B25
Retrieve articles in all journals
with MSC (2000):
47B50,
46C20,
47B44,
47B25
Additional Information
Tomas Ya. Azizov
Affiliation:
Department of Mathematics, Voronezh State University, 394693 Voronezh, Russia
Email:
azizov@tom.vsu.ru
Aad Dijksma
Affiliation:
Department of Mathematics, University of Groningen, P.O. Box 800, 9700 AV Groningen, the Netherlands
Email:
dijksma@math.rug.nl
Irina V. Gridneva
Affiliation:
Department of Mathematics, Voronezh State University, 394693 Voronezh, Russia
DOI:
http://dx.doi.org/10.1090/S0002993902065656
PII:
S 00029939(02)065656
Received by editor(s):
March 13, 2001
Received by editor(s) in revised form:
September 28, 2001
Published electronically:
May 29, 2002
Additional Notes:
This research was supported by grants NWO 047008008 and RFBR 990100391
Communicated by:
Joseph A. Ball
Article copyright:
© Copyright 2002
American Mathematical Society
