Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The Banach envelope of Paley-Wiener type spaces

Author: Mark Hoffmann
Journal: Proc. Amer. Math. Soc. 131 (2003), 543-548
MSC (2000): Primary 46A16, 30D15
Published electronically: June 5, 2002
MathSciNet review: 1933345
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give an explicit computation of the Banach envelope for the Paley-Wiener type spaces $E^p,\, 0<p<1$. This answers a question by Joel Shapiro.

References [Enhancements On Off] (What's this?)

  • 1. R. P. Boas, Entire functions, Academic Press, New York, 1954. MR 16:914f
  • 2. R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in $L_p$, Astérisque 77 (1980) 11-66. MR 82j:32015
  • 3. R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977) 569-645. MR 56:6264
  • 4. P. L. Duren, Theory of $H_p$ spaces, Academic Press, New York/London, 1970. MR 42:3552
  • 5. P. L. Duren, B. W. Romberg and A. L. Shields, Linear functionals on $H_p$ spaces when $0<p<1$, J. Reine Angew. Math. 238 (1969) 32-60. MR 41:4217
  • 6. C. Eoff, The discrete nature of the Paley-Wiener spaces, Proc. Amer. Math. Soc. 123 (1995) 505-512. MR 95c:42011
  • 7. J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, 1985. MR 87d:42023
  • 8. N. J. Kalton, N. T. Peck and J. W. Roberts, An F-space Sampler, London Mathematical Society, LNS No. 89, 1984. MR 87c:46002
  • 9. N. J. Kalton and D. A. Trautman, Remarks on subspaces of $H_p$ when $0<p<1$, Michigan Math. J. 29 (1982) 163-171. MR 83i:46030
  • 10. P. Koosis, Introduction to $H_p$ spaces, Cambridge Univ. Press, 2nd ed. 1998. MR 2000b:30052
  • 11. O. Mendez and M. Mitrea, The Banach envelopes of Besov and Triebel-Lizorkin spaces and applications to partial differential equations, J. Fourier Anal. Appl. 6 (2000) 503-533. MR 2001k:46056
  • 12. M. Mitrea, Banach envelopes of holomorphic Hardy spaces, preprint, 2000.
  • 13. A. Pe\lczynski, Projections in certain Banach spaces, Studia Math. 19 (1960) 209-228. MR 23:A3441
  • 14. M. Plancherel and G. Pólya, Fonctions entières et intègrales de Fourier multiples, Comment. Math. Helv. 10 (1937) 110-163.
  • 15. F. Ricci and M. Taibleson, Boundary Values of Harmonic Functions in Mixed Norm Spaces and Their Atomic Structure, Ann. Scuola Norm. Sup. Pisa 10 (1983) 1-54. MR 85m:30025
  • 16. H. Triebel, Theory of function spaces II, Birkhäuser, Berlin, 1992. MR 93f:46029
  • 17. J. H. Shapiro, Mackey topologies, reproducing kernels, and diagonal maps on the Hardy and Bergman spaces, Duke Math. J. 43 (1976) 187-202. MR 58:17806
  • 18. E. M. Stein, Harmonic analysis: Real-Variable Methods, Orthogonality, and Oscillatory integrals, Princeton Univ. Press, Princeton, NJ, 1993. MR 95c:42002
  • 19. W. J. Stiles, Some properties of $l\sb{p}$, $0<p<1$, Studia Math. 42 (1972) 109-119. MR 46:7840
  • 20. P. Wojtaszczyk, $H_p$-spaces, $p\leq 1$, and spline systems , Studia Math. 77 (1984) 289-320. MR 85f:46053

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46A16, 30D15

Retrieve articles in all journals with MSC (2000): 46A16, 30D15

Additional Information

Mark Hoffmann
Affiliation: Department of Mathematics, University of Missouri-Columbia, Columbia, Missouri 65211

Keywords: Paley-Wiener spaces, Banach envelopes
Received by editor(s): June 6, 2001
Received by editor(s) in revised form: September 25, 2001
Published electronically: June 5, 2002
Additional Notes: The author was partially supported by NSF grant DMS-9870027
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society