Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Nonexistence results for higher-order evolution partial differential inequalities


Author: Gennady G. Laptev
Journal: Proc. Amer. Math. Soc. 131 (2003), 415-423
MSC (2000): Primary 35G25; Secondary 35R45, 35K55, 35L70
DOI: https://doi.org/10.1090/S0002-9939-02-06665-0
Published electronically: September 17, 2002
MathSciNet review: 1933332
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Nonexistence of global solutions to semilinear higher-order (with respect to $t$) evolution partial differential inequalities $u^{(k)}_t-\Delta u\ge \vert x\vert^\sigma \vert u\vert^q$with $k=1,2,\dots$ in the complement of a ball is studied. The critical exponents $q^*$are found and the nonexistence results are proved for $1<q\le q^*$. The corresponding results for $k=1$ (parabolic problem) are sharp.


References [Enhancements On Off] (What's this?)

  • 1. S. Alinhac, Blowup for nonlinear hyperbolic equations, Birkhäuser, Boston, 1995. MR 96h:35109
  • 2. C. Bandle and H.A. Levine, Fujita type results for convective-like reaction-diffusion equations in exterior domains, Z. Angew. Math. Phys. 40 (1989), 665-676. MR 90m:35093
  • 3. C. Bandle, H.A. Levine and Q. Zhang, Critical exponents of Fujita type for inhomogeneous parabolic equations and systems, J. Math. Anal. Appl. 251 (2000), 624-648. MR 2001h:35090
  • 4. P. Baras and R. Kersner, Local and global solvability of a class of semilinear parabolic equations, J. Differential Equations 68 (1987), 238-252. MR 88k:35089
  • 5. M.F. Bidaut-Veron and S.I. Pohozaev, Nonexistence results and estimates for some nonlinear elliptic problems, J. Anal. Math. 84 (2001), 1-49.
  • 6. H. Brezis and X. Cabré, Some simple nonlinear PDE's without solutions, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (1998), 223-262. MR 99j:35001
  • 7. D. Del Santo, V. Georgiev and E. Mitidieri, Global existence of the solutions and formation of singularities for a class of hyperbolic systems, In: ``Geometric Optics and Related Topics'' (Eds. F. Colombini & N. Lerner), Progress in Nonlinear Differential Equations and Their Applications, Vol. 32, pp. 117-140, Birkhäuser, Boston, 1997.
  • 8. K. Deng and H. A. Levine, The role of critical exponents in blow-up theorems: the sequel, J. Math. Anal. Appl. 243 (2000), 85-126. MR 2001b:35031
  • 9. V. A. Galaktionov and S. I. Pohozaev, Blow-up, critical exponents and asymptotic spectra for nonlinear hyperbolic equations: Math. Preprint Univ. of Bath 00/10, 2000.
  • 10. V. Georgiev, H. Lindblad and C. Sogge, Weighted Strichartz estimate and global existence for semilinear wave equation, Amer. J. Math. 119 (1997), 1291-1319. MR 99f:35134
  • 11. M. Guedda and M. Kirane, Criticality for some evolution equations, Differ. Uravn. 37 (2001), 610-622.
  • 12. F. John, Nonlinear wave equations, formation of singularities, University Lecture Ser. 2, Amer. Math. Soc., Providence, RI, 1990. MR 91g:35001
  • 13. V. A. Kondratiev and A. A. Kon'kov, On properties of solutions of a class of nonlinear second-order equations, Mat. Sb. 185 (1994), 81-94. MR 95i:35101
  • 14. V. V. Kurta, Certain problems of the qualitative theory of second-order nonlinear differential equations, Doctoral (Phys.-Math.) Dissertation, Moscow: Steklov Inst. Math., Russ. Acad. Sci., 1994.
  • 15. V. V. Kurta, On the absence of positive solutions to semilinear elliptic equations, Tr. Mat. Inst. Steklova 227 (1999), 162-169; English transl., Proc. Steklov Inst. Math. 1999, no. 4 (227), 155-162. MR 2001h:35062
  • 16. G. G. Laptev, Absence of global positive solutions for systems of semilinear elliptic inequalities in cone, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), 107-124.
  • 17. G. G. Laptev, On the absence of solutions to a class of singular semilinear differential inequalities, Tr. Mat. Inst. Steklova 232 (2001), 223-235.
  • 18. G.G. Laptev, Nonexistence of solutions to semilinear parabolic inequalities in cones, Mat. Sb. 192(10) (2001), 51-70.
  • 19. G.G. Laptev, Some nonexistence results for higher-order evolution inequalities in cone-like domains, Electron. Res. Announc. Amer. Math. Soc. 7 (2001), 87-93.
  • 20. H. A. Levine, The role of critical exponents in blow-up theorems, SIAM Rev. 32 (1990), 262-288. MR 91j:35135
  • 21. H.A. Levine and Q. Zhang, The critical Fujita number for a semilinear heat equation in exterior domains with homogeneous Neumann boundary values, Proc. Roy. Soc. Edinburgh A 130 (2000), 591-602. MR 2001g:35134
  • 22. E. Mitidieri and S.I. Pohozaev, Nonexistence of global positive solutions to quasilinear elliptic inequalities, Dokl. Russ. Acad. Sci. 57 (1998), 250-253.
  • 23. E. Mitidieri and S. I. Pohozaev, Absence of positive solutions for quasilinear elliptic problems on $\mathbf{R}^N$, Tr. Mat. Inst. Steklova 227 (1999), 192-222; English transl., Proc. Steklov Inst. Math. 1999, no. 4 (227), 186-216. MR 2001g:35082
  • 24. E. Mitidieri and S. I. Pohozaev, A Priori Estimates and Blow-up of Solutions to Nonlinear Partial Differential Equations and Inequalities, Nauka, Moscow, 2001 (Tr. Mat. Inst. Steklova 234).
  • 25. K. Mochizuki and R. Suzuki, Critical exponent and critical blow up for quasi-liner parabolic equations, Israel J. Math. 98 (1997), 141-156. MR 98b:35084
  • 26. R. G. Pinsky, Existence and nonexistence of global solutions for $u_t=\Delta u+a(x)u^p$ in $R^d$, J. Differential Equations 133 (1997), 152-177. MR 97k:35118
  • 27. S.I. Pohozaev, Essential nonlinear capacities induced by differential operators, Dokl. Russ. Acad. Sci. 357 (1997), 592-594.
  • 28. S. I. Pohozaev and A. Tesei, Blow-up of nonnegative solutions to quasilinear parabolic inequalities, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 11 (2000), 99-109. MR 2001k:35306
  • 29. S. I. Pohozaev and A. Tesei, Instantaneous blow-up results for nonlinear parabolic and hyperbolic inequalities, Differ. Uravn. (to appear).
  • 30. A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov and A.P. Mikhailov, Blow-up in quasilinear parabolic equations, Nauka, Moscow, 1987; English transl., Walter de Gruyter, Berlin/New York, 1995. MR 89a:35002; MR 96b:35003
  • 31. G. Todorova, B. Yordanov, Critical exponent for a nonlinear wave equation with damping, C. R. Acad. Sci. Paris, Ser. I 330 (2000), 557-562. MR 2001a:35025
  • 32. L. Veron and S. I. Pohozaev, Blow-up results for nonlinear hyperbolic inequalities, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29 (2000), 393-420. MR 2001m:35227
  • 33. Qi Zhang, Blow-up results for nonlinear parabolic equations on manifolds, Duke Math. J. 97 (1999), 515-539. MR 2000d:35107
  • 34. Qi Zhang, A new critical behavior for nonlinear wave equations, J. Comput. Anal. Appl. 2 (2000), 277-292. MR 2001i:35212
  • 35. Qi Zhang, A blow-up result for a nonlinear wave equation with damping: The critical case, C. R. Acad. Sci. Paris, Série I 333 (2001), 109-114.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35G25, 35R45, 35K55, 35L70

Retrieve articles in all journals with MSC (2000): 35G25, 35R45, 35K55, 35L70


Additional Information

Gennady G. Laptev
Affiliation: Department of Function Theory, Steklov Mathematical Institute, Gubkina str. 8, Moscow, Russia
Email: laptev@home.tula.net

DOI: https://doi.org/10.1090/S0002-9939-02-06665-0
Received by editor(s): June 10, 2001
Published electronically: September 17, 2002
Additional Notes: The author was supported in part by INTAS project 00-0136 and RFBR Grant #01-01-00884.
Communicated by: David S. Tartakoff
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society