A trace formula for isometric pairs
Author:
Rongwei Yang
Journal:
Proc. Amer. Math. Soc. 131 (2003), 533541
MSC (2000):
Primary 47A13
Published electronically:
June 5, 2002
MathSciNet review:
1933344
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: It is well known that for every isometry , This fact for the shift operator is a basis for many important developments in operator theory and topology. In this paper we prove an analogous formula for a pair of isometries , namely
where is the complete antisymmetric sum and is the Fredholm index of the pair . The major tool is what we call the fringe operator. Two examples are considered.
 [ACD]
O.
P. Agrawal, D.
N. Clark, and R.
G. Douglas, Invariant subspaces in the polydisk, Pacific J.
Math. 121 (1986), no. 1, 1–11. MR 815027
(87b:46055)
 [At]
M.
F. Atiyah, 𝐾theory, Lecture notes by D. W. Anderson,
W. A. Benjamin, Inc., New YorkAmsterdam, 1967. MR 0224083
(36 #7130)
 [BCL]
C.
A. Berger, L.
A. Coburn, and A.
Lebow, Representation and index theory for 𝐶*algebras
generated by commuting isometries, J. Functional Analysis
27 (1978), no. 1, 51–99. MR 0467392
(57 #7251)
 [BDF]
L.
G. Brown, R.
G. Douglas, and P.
A. Fillmore, Extensions of 𝐶*algebras and
𝐾homology, Ann. of Math. (2) 105 (1977),
no. 2, 265–324. MR 0458196
(56 #16399)
 [CP]
R.
W. Carey and J.
D. Pincus, On local index and the cocycle property for Lefschetz
numbers, Topics in operator theory and interpolation, Oper. Theory
Adv. Appl., vol. 29, Birkhäuser, Basel, 1988,
pp. 45–86. MR 945003
(89m:47007)
 [Cu]
Raul
E. Curto, Fredholm and invertible
𝑛tuples of operators. The deformation problem, Trans. Amer. Math. Soc. 266 (1981), no. 1, 129–159. MR 613789
(82g:47010), http://dx.doi.org/10.1090/S00029947198106137896
 [DF]
R. G. Douglas and C. Foias, A classification of multiisometries, preprint.
 [Do]
Ronald
G. Douglas, Banach algebra techniques in operator theory, 2nd
ed., Graduate Texts in Mathematics, vol. 179, SpringerVerlag, New
York, 1998. MR
1634900 (99c:47001)
 [DV]
R.
G. Douglas and Dan
Voiculescu, On the smoothness of sphere extensions, J.
Operator Theory 6 (1981), no. 1, 103–111. MR 637004
(83h:46080)
 [GM]
P.
Ghatage and V.
Mandrekar, On Beurling type invariant subspaces of
𝐿²(𝑇²) and their equivalence, J. Operator
Theory 20 (1988), no. 1, 83–89. MR 972182
(90i:47005)
 [GS]
D. Gasper and N. Suciu, Intertwining properties of isometric semigroups and Wold type decompositions, Operator Theory: Adv. and Appl., 24 (1987), 183193.
 [HH]
J.
William Helton and Roger
E. Howe, Traces of commutators of integral operators, Acta
Math. 135 (1975), no. 34, 271–305. MR 0438188
(55 #11106)
 [Ho]
L.
Hörmander, The Weyl calculus of pseudodifferential
operators, Comm. Pure Appl. Math. 32 (1979),
no. 3, 360–444. MR 517939
(80j:47060), http://dx.doi.org/10.1002/cpa.3160320304
 [Su]
I.
Suciu, On the semigroups of isometries, Studia Math.
30 (1968), 101–110. MR 0229093
(37 #4671)
 [Ya1]
Rongwei
Yang, BCL index and Fredholm
tuples, Proc. Amer. Math. Soc.
127 (1999), no. 8,
2385–2393. MR 1605949
(99j:47013), http://dx.doi.org/10.1090/S0002993999048959
 [Ya2]
Rongwei
Yang, The BergerShaw theorem in the Hardy module over the
bidisk, J. Operator Theory 42 (1999), no. 2,
379–404. MR 1717024
(2000h:47040)
 [Ya3]
R. Yang, Operator theory in the Hardy space over the bidisk (III), J. of Funct. Anal., 186 (2001), 521545.
 [Ya4]
R. Yang, Beurling's phenomenon in two variables, preprint.
 [ACD]
 O. Agrawal, D. N. Clark and R. G. Douglas, Invariant subspaces in the polydisk, Pac. J. Math., 121(1986), 111. MR 87b:46055
 [At]
 M. F. Atiyah, Ktheory, W. A. Benjamin Inc., New York, Amsterdam, 1967. MR 36:7130
 [BCL]
 C. Berger, L. Coburn, A. Lebow, Representation and index theory for algebras generated by commuting isometries, J. Functional Analysis, 27(1978), No. 1. MR 57:7251
 [BDF]
 L. G. Brown, R. G. Douglas and P. A. Fillmore, Extensions of algebras and homology, Ann. of Math. (2) 105 (1977), no. 2, 265324. MR 56:16399
 [CP]
 R. W. Carey and J. D. Pincus, On local index and the cocycle property for Lefschetz numbers, Oper. Theory: Adv. Appl., 29 (1988), 4586. MR 89m:47007
 [Cu]
 R. E. Curto, Fredholm and invertible ntuples of operators. The deformation problem, Trans. A.M.S., 266 (1981), 129159. MR 82g:47010
 [DF]
 R. G. Douglas and C. Foias, A classification of multiisometries, preprint.
 [Do]
 R. G. Douglas, Banach algebra techniques in operator theory, Second edition, Graduate Texts in Mathematics, 179, SpringerVerlag, New York, 1998. MR 99c:47001
 [DV]
 R. G. Douglas and D. Voiculescu, On the smoothness of sphere extentions, J. Oper. Theory, 6 (1981), 103111. MR 83h:46080
 [GM]
 P. Ghatage and V. Mandrekar, On Beurling type invariant subspaces of and their equivalence, J. Operator Theory, 20 (1988), No. 1, 8389. MR 90i:47005
 [GS]
 D. Gasper and N. Suciu, Intertwining properties of isometric semigroups and Wold type decompositions, Operator Theory: Adv. and Appl., 24 (1987), 183193.
 [HH]
 J. W. Helton and R. Howe, Traces of commutators of integral operators, Acta. Math., 135 (1975), No. 34, 271305. MR 55:11106
 [Ho]
 L. Hörmander, The Weyl calculus of pseudodifferential operators, Acta. Math., 32 (1979), 359443. MR 80j:47060
 [Su]
 I. Suciu, On the semigroups of isometries, studia Math., 30 (1968), 101110. MR 37:4671
 [Ya1]
 R. Yang, BCL index and Fredholm tuples, Proc. A.M.S, Vol. 127 (1999), No. 8, 23852393. MR 99j:47013
 [Ya2]
 R. Yang, The BergerShaw theorem in the Hardy module over the bidisk, J. Oper. Theory, 42 (1999), 379404. MR 2000h:47040
 [Ya3]
 R. Yang, Operator theory in the Hardy space over the bidisk (III), J. of Funct. Anal., 186 (2001), 521545.
 [Ya4]
 R. Yang, Beurling's phenomenon in two variables, preprint.
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
47A13
Retrieve articles in all journals
with MSC (2000):
47A13
Additional Information
Rongwei Yang
Affiliation:
Department of Mathematics, Arizona State University, Tempe, Arizona 85287
Address at time of publication:
Department of Mathematics and Statistics, State University of New York at Albany, Albany, New York 12222
Email:
ryang@math.la.asu.edu
DOI:
http://dx.doi.org/10.1090/S000299390206687X
PII:
S 00029939(02)06687X
Received by editor(s):
March 20, 2001
Received by editor(s) in revised form:
September 25, 2001
Published electronically:
June 5, 2002
Additional Notes:
The author was partially supported by a grant from the National Science Foundation (DMS 9970932)
Communicated by:
Joseph A. Ball
Article copyright:
© Copyright 2002
American Mathematical Society
