A trace formula for isometric pairs

Author:
Rongwei Yang

Journal:
Proc. Amer. Math. Soc. **131** (2003), 533-541

MSC (2000):
Primary 47A13

Published electronically:
June 5, 2002

MathSciNet review:
1933344

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is well known that for every isometry , This fact for the shift operator is a basis for many important developments in operator theory and topology. In this paper we prove an analogous formula for a pair of isometries , namely

where is the complete anti-symmetric sum and is the Fredholm index of the pair . The major tool is what we call the

*fringe*operator. Two examples are considered.

**[ACD]**O. P. Agrawal, D. N. Clark, and R. G. Douglas,*Invariant subspaces in the polydisk*, Pacific J. Math.**121**(1986), no. 1, 1–11. MR**815027****[At]**M. F. Atiyah,*𝐾-theory*, Lecture notes by D. W. Anderson, W. A. Benjamin, Inc., New York-Amsterdam, 1967. MR**0224083****[BCL]**C. A. Berger, L. A. Coburn, and A. Lebow,*Representation and index theory for 𝐶*-algebras generated by commuting isometries*, J. Functional Analysis**27**(1978), no. 1, 51–99. MR**0467392****[BDF]**L. G. Brown, R. G. Douglas, and P. A. Fillmore,*Extensions of 𝐶*-algebras and 𝐾-homology*, Ann. of Math. (2)**105**(1977), no. 2, 265–324. MR**0458196****[CP]**R. W. Carey and J. D. Pincus,*On local index and the cocycle property for Lefschetz numbers*, Topics in operator theory and interpolation, Oper. Theory Adv. Appl., vol. 29, Birkhäuser, Basel, 1988, pp. 45–86. MR**945003****[Cu]**Raul E. Curto,*Fredholm and invertible 𝑛-tuples of operators. The deformation problem*, Trans. Amer. Math. Soc.**266**(1981), no. 1, 129–159. MR**613789**, 10.1090/S0002-9947-1981-0613789-6**[DF]**R. G. Douglas and C. Foias,*A classification of multi-isometries*, preprint.**[Do]**Ronald G. Douglas,*Banach algebra techniques in operator theory*, 2nd ed., Graduate Texts in Mathematics, vol. 179, Springer-Verlag, New York, 1998. MR**1634900****[DV]**R. G. Douglas and Dan Voiculescu,*On the smoothness of sphere extensions*, J. Operator Theory**6**(1981), no. 1, 103–111. MR**637004****[GM]**P. Ghatage and V. Mandrekar,*On Beurling type invariant subspaces of 𝐿²(𝑇²) and their equivalence*, J. Operator Theory**20**(1988), no. 1, 83–89. MR**972182****[GS]**D. Gasper and N. Suciu,*Intertwining properties of isometric semigroups and Wold type decompositions*, Operator Theory: Adv. and Appl., 24 (1987), 183-193.**[HH]**J. William Helton and Roger E. Howe,*Traces of commutators of integral operators*, Acta Math.**135**(1975), no. 3-4, 271–305. MR**0438188****[Ho]**L. Hörmander,*The Weyl calculus of pseudodifferential operators*, Comm. Pure Appl. Math.**32**(1979), no. 3, 360–444. MR**517939**, 10.1002/cpa.3160320304**[Su]**I. Suciu,*On the semi-groups of isometries*, Studia Math.**30**(1968), 101–110. MR**0229093****[Ya1]**Rongwei Yang,*BCL index and Fredholm tuples*, Proc. Amer. Math. Soc.**127**(1999), no. 8, 2385–2393. MR**1605949**, 10.1090/S0002-9939-99-04895-9**[Ya2]**Rongwei Yang,*The Berger-Shaw theorem in the Hardy module over the bidisk*, J. Operator Theory**42**(1999), no. 2, 379–404. MR**1717024****[Ya3]**R. Yang,*Operator theory in the Hardy space over the bidisk (III)*, J. of Funct. Anal., 186 (2001), 521-545.**[Ya4]**R. Yang,*Beurling's phenomenon in two variables*, preprint.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
47A13

Retrieve articles in all journals with MSC (2000): 47A13

Additional Information

**Rongwei Yang**

Affiliation:
Department of Mathematics, Arizona State University, Tempe, Arizona 85287

Address at time of publication:
Department of Mathematics and Statistics, State University of New York at Albany, Albany, New York 12222

Email:
ryang@math.la.asu.edu

DOI:
https://doi.org/10.1090/S0002-9939-02-06687-X

Received by editor(s):
March 20, 2001

Received by editor(s) in revised form:
September 25, 2001

Published electronically:
June 5, 2002

Additional Notes:
The author was partially supported by a grant from the National Science Foundation (DMS 9970932)

Communicated by:
Joseph A. Ball

Article copyright:
© Copyright 2002
American Mathematical Society