Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On pro-unipotent groups satisfying the Golod-Shafarevich condition


Author: M. Kassabov
Journal: Proc. Amer. Math. Soc. 131 (2003), 329-336
MSC (2000): Primary 20E18; Secondary 17B65, 22E65
DOI: https://doi.org/10.1090/S0002-9939-02-06824-7
Published electronically: September 19, 2002
MathSciNet review: 1933320
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that a pro-unipotent group satisfying the Golod-Shafarevich condition contains a free non-abelian pro-unipotent group. Together with the result of A. Magid this implies that such a group is not linear.


References [Enhancements On Off] (What's this?)

  • 1. Vesselin Drensky, Free algebras and PI-algebras, Springer-Verlag Singapore, Singapore, 2000. MR 2000j:16002
  • 2. Michael Freedman, Richard Hain, and Peter Teichner, Betti number estimates for nilpotent groups, Fields Medalists' lectures, World Sci. Publishing, River Edge, NJ, 1997, pp. 413-434. MR 99d:20052
  • 3. E. S. Golod, On nil-algebras and finitely approximable $p$-groups, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 273-276. MR 28:5082
  • 4. E. S. Golod and I. R. Safarevic, On the class field tower, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 261-272. MR 28:5056
  • 5. Alexander Lubotzky and Andy R. Magid, Free prounipotent groups, J. Algebra 80 (1983), no. 2, 323-349. MR 85b:14062
  • 6. -, Cohomology, Poincaré series, and group algebras of unipotent groups, Amer. J. Math. 107 (1985), no. 3, 531-553. MR 86h:20063
  • 7. Andy R. Magid, Identities for prounipotent groups, Algebraic groups and their generalizations: classical methods (University Park, PA, 1991), Amer. Math. Soc., Providence, RI, 1994, pp. 281-290. MR 95j:20023
  • 8. Christophe Reutenauer, Free Lie algebras, The Clarendon Press, Oxford University Press, New York, 1993. MR 94j:17002
  • 9. Peter Roquette, On class field towers, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), Thompson, Washington, D.C., 1967, pp. 231-249. MR 36:1418
  • 10. Walter Rudin, Functional analysis, McGraw-Hill Inc., New York, 1991. MR 92k:46001
  • 11. John S. Wilson, Finite presentations of pro-$p$ groups and discrete groups, Invent. Math. 105 (1991), no. 1, 177-183. MR 92k:20060
  • 12. E. Zelmanov, On groups satisfying the Golod-Shafarevich condition, New horizons in pro-$p$ groups, Birkhäuser Boston, Boston, MA, 2000, pp. 223-232. MR 2002f:20037

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 20E18, 17B65, 22E65

Retrieve articles in all journals with MSC (2000): 20E18, 17B65, 22E65


Additional Information

M. Kassabov
Affiliation: Department of Mathematics, Yale University, 10 Hillhouse Ave., P.O. Box 208283, New Haven, Connecticut 06520-8283
Email: martin.kassabov@yale.edu

DOI: https://doi.org/10.1090/S0002-9939-02-06824-7
Keywords: Pro-unipotent groups, Golod--Shafarevich condition
Received by editor(s): November 16, 2000
Published electronically: September 19, 2002
Communicated by: Lance W. Small
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society