Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Segal-Bargmann transforms of one-mode interacting Fock spaces associated with Gaussian and Poisson measures


Authors: Nobuhiro Asai, Izumi Kubo and Hui-Hsiung Kuo
Journal: Proc. Amer. Math. Soc. 131 (2003), 815-823
MSC (2000): Primary 46L53; Secondary 33D45, 44A15
Published electronically: July 2, 2002
MathSciNet review: 1937419
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\mu_{g}$ and $\mu_{p}$ denote the Gaussian and Poisson measures on ${\mathbb R}$, respectively. We show that there exists a unique measure $\widetilde{\mu}_{g}$ on ${\mathbb C}$such that under the Segal-Bargmann transform $S_{\mu_g}$the space $L^2({\mathbb R},\mu_g)$ is isomorphic to the space ${\mathcal H}L^2({\mathbb C}, \widetilde{\mu}_{g})$ of analytic $L^2$-functions on ${\mathbb C}$ with respect to $\widetilde{\mu}_{g}$. We also introduce the Segal-Bargmann transform $S_{\mu_p}$ for the Poisson measure $\mu_{p}$and prove the corresponding result. As a consequence, when $\mu_{g}$ and $\mu_{p}$ have the same variance, $L^2({\mathbb R},\mu_g)$ and $L^2({\mathbb R},\mu_p)$ are isomorphic to the same space ${\mathcal H}L^2({\mathbb C}, \widetilde{\mu}_{g})$ under the $S_{\mu_g}$- and $S_{\mu_p}$-transforms, respectively. However, we show that the multiplication operators by $x$ on $L^2({\mathbb R}, \mu_g)$ and on $L^2({\mathbb R}, \mu_p)$ act quite differently on ${\mathcal H}L^2({\mathbb C}, \widetilde{\mu}_{g})$.


References [Enhancements On Off] (What's this?)

  • 1. Luigi Accardi and Marek Bożejko, Interacting Fock spaces and Gaussianization of probability measures, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1 (1998), no. 4, 663–670. MR 1665281, 10.1142/S0219025798000363
  • 2. L. Accardi, Y.-G. Lu, and I. Volovich, The QED Hilbert module and interacting Fock spaces. IIAS reports 1997-008, Pub. of IIAS (Kyoto), 1997.
  • 3. N. Asai, Analytic characterization of one-mode interacting Fock space. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 4 (2001), 409-415.
  • 4. N. Asai, Integral transform and Segal-Bargmann representation associated to q-Charlier polynomials. Preprint (2001), http://arXiv.org/abs/math.CA/0104260; to appear in Quantum Information IV (T. Hida and K. Saitô, eds.).
  • 5. Nobuhiro Asai, Izumi Kubo, and Hui-Hsiung Kuo, Bell numbers, log-concavity, and log-convexity, Acta Appl. Math. 63 (2000), no. 1-3, 79–87. Recent developments in infinite-dimensional analysis and quantum probability. MR 1831247, 10.1023/A:1010738827855
  • 6. N. Asai, I. Kubo, and H.-H. Kuo, CKS-space in terms of growth functions. in: Quantum Information II, T. Hida and K. Saitô (eds.) World Scientific, 2000, pp. 17-27.
  • 7. Nobuhiro Asai, Izumi Kubo, and Hui-Hsiung Kuo, Roles of log-concavity, log-convexity, and growth order in white noise analysis, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 4 (2001), no. 1, 59–84. MR 1824473, 10.1142/S0219025701000492
  • 8. Nobuhiro Asai, Izumi Kubo, and Hui-Hsiung Kuo, General characterization theorems and intrinsic topologies in white noise analysis, Hiroshima Math. J. 31 (2001), no. 2, 299–330. MR 1849193
  • 9. V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, Comm. Pure Appl. Math. 14 (1961), 187–214. MR 0157250
  • 10. V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform. Part II. A family of related function spaces. Application to distribution theory, Comm. Pure Appl. Math. 20 (1967), 1–101. MR 0201959
  • 11. T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach Science Publishers, New York-London-Paris, 1978. Mathematics and its Applications, Vol. 13. MR 0481884
  • 12. W. G. Cochran, H.-H. Kuo, and A. Sengupta, A new class of white noise generalized functions, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1 (1998), no. 1, 43–67. MR 1611903, 10.1142/S0219025798000053
  • 13. Leonard Gross and Paul Malliavin, Hall’s transform and the Segal-Bargmann map, Itô’s stochastic calculus and probability theory, Springer, Tokyo, 1996, pp. 73–116. MR 1439519
  • 14. R. L. Hudson and K. R. Parthasarathy, Quantum Ito’s formula and stochastic evolutions, Comm. Math. Phys. 93 (1984), no. 3, 301–323. MR 745686
  • 15. Yoshifusa Ito and Izumi Kubo, Calculus on Gaussian and Poisson white noises, Nagoya Math. J. 111 (1988), 41–84. MR 961216
  • 16. Ilona Królak, Measures connected with Bargmann’s representation of the 𝑞-commutation relation for 𝑞>1, Quantum probability (Gdańsk, 1997) Banach Center Publ., vol. 43, Polish Acad. Sci., Warsaw, 1998, pp. 253–257. MR 1649728
  • 17. Izumi Kubo and Hui-Hsiung Kuo, Finite-dimensional Hida distributions, J. Funct. Anal. 128 (1995), no. 1, 1–47. MR 1317709, 10.1006/jfan.1995.1022
  • 18. I. Kubo and Y. Yokoi, Generalized functions and fluctuations in fluctuation analysis. in: Mathematical Approach to Fluctuations, Vol.II, T. Hida et al. (eds.) World Scientific, 1993, pp. 203-230.
  • 19. Hui-Hsiung Kuo, White noise distribution theory, Probability and Stochastics Series, CRC Press, Boca Raton, FL, 1996. MR 1387829
  • 20. Yuh-Jia Lee, Analytic version of test functionals, Fourier transform, and a characterization of measures in white noise calculus, J. Funct. Anal. 100 (1991), no. 2, 359–380. MR 1125230, 10.1016/0022-1236(91)90115-L
  • 21. Hans van Leeuwen and Hans Maassen, A 𝑞 deformation of the Gauss distribution, J. Math. Phys. 36 (1995), no. 9, 4743–4756. MR 1347109, 10.1063/1.530917
  • 22. I. E. Segal, Mathematical characterization of the physical vacuum for a linear Bose-Einstein field. (Foundations of the dynamics of infinite systems. III), Illinois J. Math. 6 (1962), 500–523. MR 0143519
  • 23. I. E. Segal, The complex-wave representation of the free boson field, Topics in functional analysis (essays dedicated to M. G. Kreĭn on the occasion of his 70th birthday), Adv. in Math. Suppl. Stud., vol. 3, Academic Press, New York-London, 1978, pp. 321–343. MR 538026
  • 24. J. A. Shohat and J. D. Tamarkin, The Problem of Moments, American Mathematical Society Mathematical surveys, vol. I, American Mathematical Society, New York, 1943. MR 0008438
  • 25. Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society, Providence, R.I., 1975. American Mathematical Society, Colloquium Publications, Vol. XXIII. MR 0372517
  • 26. Yoshitaka Yokoi, Simple setting for white noise calculus using Bargmann space and Gauss transform, Hiroshima Math. J. 25 (1995), no. 1, 97–121. MR 1322604

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46L53, 33D45, 44A15

Retrieve articles in all journals with MSC (2000): 46L53, 33D45, 44A15


Additional Information

Nobuhiro Asai
Affiliation: International Institute for Advanced Studies, Kizu, Kyoto, 619-0225, Japan
Address at time of publication: Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 606-8502, Japan
Email: asai@kurims.kyoto-u.ac.jp

Izumi Kubo
Affiliation: Department of Mathematics, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
Email: kubo@math.sci.hiroshima-u.ac.jp

Hui-Hsiung Kuo
Affiliation: Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803
Email: kuo@math.lsu.edu

DOI: http://dx.doi.org/10.1090/S0002-9939-02-06564-4
Keywords: Interacting Fock space, Segal-Bargmann transform, coherent vector, Gaussian measure, Poisson measure, space of square integrable analytic functions, decomposition of multiplication operator
Received by editor(s): August 18, 2001
Received by editor(s) in revised form: October 12, 2001
Published electronically: July 2, 2002
Additional Notes: Research of the first author supported by a Postdoctoral Fellowship of the International Institute for Advanced Studies, Kyoto, Japan
Communicated by: Claudia M. Neuhauser
Article copyright: © Copyright 2002 American Mathematical Society