Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Segal-Bargmann transforms of one-mode interacting Fock spaces associated with Gaussian and Poisson measures

Authors: Nobuhiro Asai, Izumi Kubo and Hui-Hsiung Kuo
Journal: Proc. Amer. Math. Soc. 131 (2003), 815-823
MSC (2000): Primary 46L53; Secondary 33D45, 44A15
Published electronically: July 2, 2002
MathSciNet review: 1937419
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\mu_{g}$ and $\mu_{p}$ denote the Gaussian and Poisson measures on ${\mathbb R}$, respectively. We show that there exists a unique measure $\widetilde{\mu}_{g}$ on ${\mathbb C}$such that under the Segal-Bargmann transform $S_{\mu_g}$the space $L^2({\mathbb R},\mu_g)$ is isomorphic to the space ${\mathcal H}L^2({\mathbb C}, \widetilde{\mu}_{g})$ of analytic $L^2$-functions on ${\mathbb C}$ with respect to $\widetilde{\mu}_{g}$. We also introduce the Segal-Bargmann transform $S_{\mu_p}$ for the Poisson measure $\mu_{p}$and prove the corresponding result. As a consequence, when $\mu_{g}$ and $\mu_{p}$ have the same variance, $L^2({\mathbb R},\mu_g)$ and $L^2({\mathbb R},\mu_p)$ are isomorphic to the same space ${\mathcal H}L^2({\mathbb C}, \widetilde{\mu}_{g})$ under the $S_{\mu_g}$- and $S_{\mu_p}$-transforms, respectively. However, we show that the multiplication operators by $x$ on $L^2({\mathbb R}, \mu_g)$ and on $L^2({\mathbb R}, \mu_p)$ act quite differently on ${\mathcal H}L^2({\mathbb C}, \widetilde{\mu}_{g})$.

References [Enhancements On Off] (What's this?)

  • 1. L. Accardi and M. Bozejko, Interacting Fock space and Gaussianization of probability measures. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 1 (1998), 663-670. MR 2000d:60158
  • 2. L. Accardi, Y.-G. Lu, and I. Volovich, The QED Hilbert module and interacting Fock spaces. IIAS reports 1997-008, Pub. of IIAS (Kyoto), 1997.
  • 3. N. Asai, Analytic characterization of one-mode interacting Fock space. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 4 (2001), 409-415.
  • 4. N. Asai, Integral transform and Segal-Bargmann representation associated to q-Charlier polynomials. Preprint (2001),; to appear in Quantum Information IV (T. Hida and K. Saitô, eds.).
  • 5. N. Asai, I. Kubo, and H.-H. Kuo, Bell numbers, log-concavity, and log-convexity. Acta Appl. Math., 63 (2000), 79-87. MR 2002f:60130
  • 6. N. Asai, I. Kubo, and H.-H. Kuo, CKS-space in terms of growth functions. in: Quantum Information II, T. Hida and K. Saitô (eds.) World Scientific, 2000, pp. 17-27.
  • 7. N. Asai, I. Kubo, and H.-H. Kuo, Roles of log-concavity, log-convexity, and growth order in white noise analysis. Infinite Dimensional Analysis, Quantum Probability, and Related Topics, 4 (2001) 59-84. MR 2002a:46055
  • 8. N. Asai, I. Kubo, and H.-H. Kuo, General characterization theorems and intrinsic topologies in white noise analysis. Hiroshima Math. J., 31 (2001), 299-330. MR 2002f:60131
  • 9. V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, I. Comm. Pure Appl. Math., 14 (1961), 187-214. MR 28:486
  • 10. V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, II. Comm. Pure Appl. Math., 20 (1967), 1-101. MR 34:1836
  • 11. T. S. Chihara, An Introduction to Orthogonal Polynomials. Gordon and Breach, 1978. MR 58:1979
  • 12. W. G. Cochran, H.-H. Kuo, and A. Sengupta, A new class of white noise generalized functions. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 1 (1998), 43-67. MR 99d:46062
  • 13. L. Gross and P. Malliavin, Hall's transform and the Segal-Bargmann map. in: Itô Stochastic Calculus and Probability Theory, N. Ikeda et al. (eds.) Springer-Verlag, 1996, pp. 73-116. MR 98j:22010
  • 14. R. L. Hudson and K. R. Parthasarathy, Quantum Ito's formula and stochastic evolutions. Comm. Math. Phys., 93 (1984), 301-323. MR 86e:46057
  • 15. Y. Ito and I. Kubo, Calculus on Gaussian and Poisson white noises. Nagoya Math. J., 111 (1988), 41-84. MR 90a:60118
  • 16. I. Krolak, Measures connected with Bargmann's representation of the $q$-commutation relation for $q>1$. Banach Center Publ., 43 (1998), 253-257. MR 99h:81095
  • 17. I. Kubo and H.-H. Kuo, Finite dimensional Hida distributions. J. Funct. Anal., 128 (1995), 1-47. MR 96f:60070
  • 18. I. Kubo and Y. Yokoi, Generalized functions and fluctuations in fluctuation analysis. in: Mathematical Approach to Fluctuations, Vol.II, T. Hida et al. (eds.) World Scientific, 1993, pp. 203-230.
  • 19. H.-H. Kuo, White Noise Distribution Theory. CRC Press, 1996. MR 97m:60056
  • 20. Y.-J. Lee, Analytic version of test functionals, Fourier transform and a characterization of measures in white noise calculus. J. Funct. Anal., 100 (1991), 359-380. MR 92k:60186
  • 21. H. van Leeuwen and H. Maassen, A $q$ deformation of the Gauss distribution. J. Math. Phys., 36 (1995), 4743-4756. MR 97a:81104
  • 22. I. E. Segal, Mathematical characterization of the physical vacuum for a linear Bose-Einstein field. Illinois J. Math., 6 (1962), 500-523. MR 26:1075
  • 23. I. E. Segal, The complex wave representation of the free Boson field. in: Essays Dedicated to M. G. Krein on the Occassion of His 70th Birthday, Advances in Math.: Supplementary Studies Vol.3, I. Goldberg and M. Kac (eds.) Academic, 1978, pp. 321-344. MR 82d:81069
  • 24. J. Shohat and J. Tamarkin, The Problem of Moments. Math Surveys 1, Amer. Math. Soc., 1943. MR 5:5c
  • 25. M. Szegö, Orthogonal Polynomials. Coll. Publ. 23, Amer. Math. Soc., 1975. MR 51:8724
  • 26. Y. Yokoi, Simple setting for white noise calculus using Bargmann space and Gauss transform. Hiroshima Math. J., 25 (1995), 97-121. MR 96h:46060

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46L53, 33D45, 44A15

Retrieve articles in all journals with MSC (2000): 46L53, 33D45, 44A15

Additional Information

Nobuhiro Asai
Affiliation: International Institute for Advanced Studies, Kizu, Kyoto, 619-0225, Japan
Address at time of publication: Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 606-8502, Japan

Izumi Kubo
Affiliation: Department of Mathematics, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan

Hui-Hsiung Kuo
Affiliation: Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803

Keywords: Interacting Fock space, Segal-Bargmann transform, coherent vector, Gaussian measure, Poisson measure, space of square integrable analytic functions, decomposition of multiplication operator
Received by editor(s): August 18, 2001
Received by editor(s) in revised form: October 12, 2001
Published electronically: July 2, 2002
Additional Notes: Research of the first author supported by a Postdoctoral Fellowship of the International Institute for Advanced Studies, Kyoto, Japan
Communicated by: Claudia M. Neuhauser
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society