BERNSTEIN–WALSH INEQUALITIES AND THE EXPONENTIAL CURVE IN \(\mathbb{C}^2 \)

DAN COMAN AND EVGENY A. POLETSKY

(Communicated by Juha M. Heinonen)

Abstract. It is shown that for the pluripolar set \(K = \{ (z, e^z) : |z| \leq 1 \} \) in \(\mathbb{C}^2 \) there is a global Bernstein–Walsh inequality: If \(P \) is a polynomial of degree \(n \) on \(\mathbb{C}^2 \) and \(|P| \leq 1 \) on \(K \), this inequality gives an upper bound for \(|P(z, w)| \) which grows like \(\exp(\frac{1}{4} n^2 \log n) \). The result is used to obtain sharp estimates for \(|P(z, e^z)| \).

1. Introduction

If \(X \) is a non-pluripolar compact set in \(\mathbb{C}^k \) and \(P \) is a polynomial of degree \(n \) on \(\mathbb{C}^k \), the Bernstein–Walsh inequality is (see [K])
\[
|P(z)| \leq \|P\|_{X} e^{nV_X(z)},
\]
where \(\|P\|_{X} \) is the uniform norm of \(P \) on \(X \) and \(V_X(z) \) is the extremal function of \(X \). For example, if \(z = (z_1, \ldots, z_k) \) and \(X = \Delta^k = \{ z \in \mathbb{C}^k : |z_j| \leq 1, 1 \leq j \leq k \} \) is the unit polydisk, then
\[
V_X(z) = L(z) = \max\{ \log^+ |z_1|, \ldots, \log^+ |z_k| \}.
\]

If \(X \) is pluripolar, then, in general, such estimates are impossible. For example, if \(X \) is any piece of an algebraic curve \(\Gamma = \{ (z, w) \in \mathbb{C}^2 : P(z, w) = 0 \} \), where \(P \) is a polynomial, then \(\| eP + 1 \|_X = 1 \) for every \(c > 0 \) and there are no upper bounds on \(eP + 1 \).

We consider the case when \(\Gamma = \{ (z, w) \in \mathbb{C}^2 : w = f(z) \} \) and the compact set
\[
K = \{ (z, f(z)) \in \mathbb{C}^2 : |z| \leq 1 \},
\]
where \(f \) is an entire transcendental function. Then any non-trivial polynomial is not identically equal to 0 on \(K \). Therefore a compactness argument shows that, for every \(n \), there is a number \(c_n > 0 \) such that for any polynomial \(P(z, w) \) of degree at most \(n \) the norm \(\|P\|_{\Delta^2} \leq c_n \|P\|_K \). Hence for every \((z, w) \in \mathbb{C}^2 \)
\[
|P(z, w)| \leq \|P\|_K E_n(f)e^{nL(z, w)},
\]
where \(E_n(f) \) is the least value of \(c_n \). (See also Section 2.)

Inequality (2) can be viewed as a transcendental global version of the Bernstein–Walsh inequality ([I]), provided that one can obtain good estimates for \(E_n(f) \). Moreover, the numbers \(E_n(f) \) can serve as a measure of transcendency of \(f \): A "less
transcendental” function f has larger numbers $E_n(f)$. Note that if f was algebraic, hence a polynomial of degree l, then $E_n(f) = +\infty$ for every $n \geq l$.

In this paper we study the classical case of $f(z) = e^z$ and we let $E_n = E_n(e^z)$. For this function we prove the following global Bernstein–Walsh inequality:

Theorem 1.1. If $f(z) = e^z$, then there exists a constant $C_1 > 0$ so that

$$
\exp \left(\frac{n^2 \log n}{2} - C_1 n^2 \right) \leq E_n \leq \exp \left(\frac{n^2 \log n}{2} + C_1 n^2 \right),
$$

for all $n \geq 1$. If P is a polynomial of degree n on \mathbb{C}^2, then

$$
|P(z, w)| \leq \|P\|_K \exp \left(\frac{n^2 \log n}{2} + C_1 n^2 + nL(z, w) \right).
$$

Thus, despite the pluripolarity of K, there is an upper estimate for the absolute value of polynomials, which grows asymptotically as $\exp(n^2 \log n)$. This is not much worse than $\exp(n)$ in the classical Bernstein–Walsh inequality \mathcal{I}. Moreover, this estimate is asymptotically sharp.

Inequality \mathcal{I} improves when $(z, w) \in \Gamma$. In \mathcal{T} (see also \mathcal{B}) it was proved that

$$
|P(z, e^z)| \leq \|P\|_K e^{n^2 \log^+ |z| + 6n|z|}.
$$

This inequality was used to prove deep theorems concerning the algebraic independence of values of e^z.

For a general transcendental function f we introduce the function

$$
m_n(r) = \sup \{ \log |P(z, f(z))| : \deg P \leq n, \|P\|_K \leq 1, |z| \leq r \}.
$$

The numbers $m_n(r)$ can also serve as a measure of transcendency of f. Let $(|z| - 1)^+ = \max\{|z| - 1, 0\}$. As a consequence of Theorem 1.1, we prove the following restricted Bernstein–Walsh inequality for $f(z) = e^z$:

Theorem 1.2. There exists an absolute constant $C_2 > 0$ such that for every polynomial P of degree $n \geq 1$ on \mathbb{C}^2 and every $z \in \mathbb{C}$ we have

$$
|P(z, e^z)| \leq \|P\|_K \exp \left[\frac{n^2}{2} \left(\log^+ |z| + C_2 \frac{(|z| - 1)^+}{1 + \log n} \right) \right].
$$

Moreover $\lim_{n \to \infty} m_n(r)/n^2 = \frac{1}{2} \log r$, locally uniformly for $r \geq 1$.

This theorem provides the exact asymptotic behavior of the functions $m_n(r)$. It also improves Tijdeman’s estimate if one fixes z and lets $n \to \infty$. On the other hand, if one fixes n and lets $z \to \infty$, then Tijdeman’s estimate is better (at least if n is large).

There is a fundamental difference between classical and transcendental Bernstein–Walsh inequalities. In the classical case \mathcal{I} the extremal function V_X is given by (see \mathcal{K})

$$
V_X(z, w) = \lim_{n \to \infty} \frac{1}{n} \sup \{ \log^+ |P(z, w)| : \deg P = n, \|P\|_X \leq 1 \}.
$$

In the transcendental case \mathcal{I} it follows from Theorem 1.1 and the Hartogs lemma that

$$
\limsup_{n \to \infty} \frac{2}{n^2 \log n} \sup \{ \log^+ |P(z, w)| : \deg P = n, \|P\|_K \leq 1 \} = 1.$$
everywhere on \(\mathbb{C}^2 \) except a pluripolar set. Moreover, by Theorem 1.2
\[
\limsup_{n \to \infty} \frac{2}{n^2 \log n} \sup \{ \log^+ |P(z,e^z)| : \deg P = n, \|P\|_K \leq 1 \} = 0.
\]

The next proposition holds for all entire transcendental functions.

Proposition 1.3. If \(f \) is an entire transcendental function, then
\[
m_n(r) \geq \frac{n^2 + 3n}{2} \log r
\]
for every \(r \geq 1 \). Moreover for \(r \geq 1 \)
\[
E_n(f) \geq \exp \left(\frac{n^2 + 3n}{2} \log r - nL(r, M_f(r)) \right).
\]
If \(f \) is of finite order of growth \(< \rho \), or of finite order \(\rho \) and finite type, then
\[
E_n(f) \geq \exp \left(\frac{n^2 \log n}{2\rho} - Cn^2 \right)
\]
for all \(n \geq 1 \), where \(C = C(f) > 0 \).

Proposition 1.3 and the previous theorem imply that the function \(e^z \) provides asymptotically the smallest possible functions \(m_n(r) \).

We are grateful to Norm Levenberg for the introduction to the problem and discussions.

2. Preliminaries

We use the following notation. If \(g \) is an entire holomorphic function we let \(M_g(r) = \max \{|g(z)| : |z| = r\} \).

For \(n \geq 0 \) we denote by \(\mathcal{P}_n \) the space of polynomials \(P \in \mathbb{C}[z,w] \) of degree at most \(n \). Then \(\dim \mathcal{P}_n = (n+1)(n+2)/2 = N+1 \), where \(N = (n^2 + 3n)/2 \).

Let \(f \) be an entire transcendental function. For any polynomial \(P \in \mathcal{P}_n \) we denote by \(P_* \) the entire function
\[
P_*(z) = P(z,f(z)), \; z \in \mathbb{C},
\]
so \(\|P\|_K = M_{P_*}(1) \). Since \(f \) is transcendental, it follows that \(\| \cdot \|_K \) is a norm on each vector space \(\mathcal{P}_n \). As \(\mathcal{P}_n \) are finite dimensional we have
\[
E_n(f) = \sup \{ \|P\|_{\Delta^2} : P \in \mathcal{P}_n, \|P\|_K \leq 1 \} < +\infty,
\]
for each \(n \geq 0 \). Note that \(E_0(f) = 1 \) and \(E_n(f) \leq E_{n+1}(f) \).

Inequality (2) implies that the function
\[
u_n(z) = \sup \{ \log |P_*(z)| : P \in \mathcal{P}_n, \|P\|_K \leq 1 \}
\]
is well defined. It is easy to see by a normal family argument that \(u_n \) is a non-negative continuous subharmonic function on \(\Delta \) and \(u_n = 0 \) on \(\Delta \). We have \(m_n(r) = \max \{ u_n(z) : |z| \leq r \} \), hence \(m_n(r) \) is a continuous increasing convex function of \(\log r \).
We need the following simple lemma:

Lemma 2.1. The following inequalities hold for every integer \(m > 0 \):

\[
\log(m + 1) \leq \sum_{j=1}^{m} \frac{1}{j} \leq \log m + 1,
\]

\[
m \log m - m + 1 \leq \sum_{j=1}^{m} \log j \leq (m + 1) \log m - m + 1,
\]

\[
\frac{m^2 \log m}{2} - \frac{m^2}{4} + \frac{1}{4} \leq \sum_{j=1}^{m} j \log j \leq \frac{m^2 \log m}{2} - \frac{m^2}{4} + m \log m + \frac{1}{4}.
\]

Proof. The proof is elementary. For instance, the third inequality follows using \(\int_{j-1}^{j} x \log x \, dx \leq j \log j \leq \int_{j}^{j+1} x \log x \, dx \).

\[\square\]

3. Proofs

We first prove Proposition 1.3 which was stated for arbitrary entire transcendental functions \(f \). Recall the notations \(N = (n^2 + 3n)/2 \) and \(P_\ast(z) = P(z, f(z)) \).

Proof of Proposition 1.3. Since \(\dim \mathcal{P}_n = N + 1 \), there exists \(P \in \mathcal{P}_n \), \(P \neq 0 \), such that the vanishing order of \(P_\ast \) at 0 is at least \(N \). We let \(g(z) = P_\ast(z)/z^N \), so

\[M_{P_\ast}(1) = M_g(1) \leq M_g(r) = M_{P_\ast}(r)/r^N,\]

provided that \(r \geq 1 \). This and the definition of \(m_n(r) \) clearly imply (4). Using (2) with \(w = f(z) \) and \(|z| \leq r \) we get

\[r^N \leq M_{P_\ast}(r)/M_{P_\ast}(1) \leq E_n(f) \exp [nL(r, M_f(r))],\]

so (5) follows.

In the case when \(f \) is of finite order of growth, we have \(\log^+ M_f(r) \leq C r^\rho \) for every \(r \geq 1 \). The conclusion follows by taking \(r = n^{1/\rho} \) in (5) and by using the above estimate on \(\log^+ M_f(r) \).

\[\square\]

In the following proofs we have \(f(z) = e^z \), so \(P_\ast(z) = P(z, e^z) \).

Proof of Theorem 1.1. The lower estimate of \(E_n \) follows from Proposition 1.3 since \(f(z) = e^z \) has order of growth \(\rho = 1 \) and type 1 with respect to this order. Moreover, (3) follows from (2) and the upper bound of \(E_n \). To prove the upper bound, we introduce the following notation. Let \(d = \frac{d}{dz} \). For any polynomial \(R(\lambda) = \sum_{j=0}^{m} c_j \lambda^j \) we denote by \(D_R \) the constant-coefficient differential operator

\[D_R = R(d) = \sum_{j=0}^{m} c_j \frac{d^j}{dz^j}.\]

Then for any integer \(t \geq 0 \) and any \(\alpha \in \mathbb{C} \) we have

\[D_R[e^t e^{\alpha z}] \big|_{z=0} = \sum_{j=t}^{\infty} c_j \frac{j!}{(j-t)!} \alpha^{j-t} = \frac{d^t R}{dz^t} \big|_{\lambda=\alpha} = R^{(t)}(\alpha).\]

Now fix \(P \in \mathcal{P}_n \), \(n \geq 1 \), with \(\|P\|_K \leq 1 \). By Cauchy’s estimates we have

\[P^{(l)}(0) \leq l, \forall l \geq 0.\]
We write

\[P(z, w) = \sum_{k=0}^{n} P_{n-k}(z)w^k, \quad P_{n-k}(z) = \sum_{j=0}^{n-k} c_{kj} z^j. \]

In the sequel, we denote by \(C \) all absolute constants involved in our estimates.
(They may change from one inequality to the next.)

Proposition 3.1. There exists a constant \(C \) such that

\[M_{P_{n-k}(1)} \leq \exp\left(\frac{n^2 \log n}{2} + Cn^2 \right), \quad \forall k \in \{0, \ldots, n\}. \]

Note that this proposition implies Theorem 1. Indeed, \(\|P\|_{\Delta^2} \leq n \sum_{k=0}^{n} M_{P_{n-k}(1)} \leq \exp\left(\frac{n^2 \log n}{2} + Cn^2 \right) \), \(\forall k \in \{0, \ldots, n\} \). So the same estimate holds for \(E_n \) since \(P \) is arbitrary with \(\|P\|_K \leq 1 \).

In order to prove Proposition 3.1, we fix \(k \in \{0, \ldots, n\} \). We will estimate the coefficients \(c_{kj} \) of \(P_{n-k} \) by using the differential operators given by the polynomials

\[R_k^* (\lambda - l) = \prod_{l=0, l \neq k}^{n} (\lambda - l)^{n-l+1}, \]

\[R_k (\lambda) = R_k^* (\lambda - k)^j, \quad j = 0, \ldots, n - k. \]

Note that \(\deg R_{k,n-k} = N \). By (6) we have

\[\alpha_{kj} := D_{R_k^*} P^*_k (z) \big|_{z=0} = (D_{R_k^*} (d - k)^j) \left[\sum_{l=0}^{n-k} c_{kl} z^l e^{kz} \right] \big|_{z=0} = D_{R_k} \left[\sum_{l=j}^{n-k} c_{kl} \frac{l!}{(l-j)!} z^{l-j} e^{kz} \right] \big|_{z=0} = \sum_{l=j}^{n-k} c_{kl} \frac{l!}{(l-j)!} R_k^{(l-j)} (k). \]

We write

\[c_{kl}' = l! c_{kl}, \quad l = 0, \ldots, n - k, \]

\[r_{kt} = R_k^{(t)} (k)/t!, \quad t = 0, \ldots, n - k. \]

Then \(c_{kl}' \) are the unique solution of the triangular system

\[\sum_{l=j}^{n-k} r_{k,l-j} c_{kl}' = \alpha_{kj}, \quad j = 0, \ldots, n - k, \]

which yields

\[c_{k,n-k} = \frac{\alpha_{k,n-k-j}}{r_{k0}} - \sum_{l=1}^{j} \frac{r_{kl}}{r_{k0}} c_{k,n-k-j+l}, \quad j = 0, \ldots, n - k. \]

In order to estimate the coefficients \(c_{kj}' \), we obtain first bounds for \(\alpha_{kj}, r_{k0} \) and \(r_{kl}/r_{k0} \). This is done in a sequence of lemmas.
Lemma 3.2. For all \(k = 0, \ldots, n \) and \(j = 0, \ldots, n - k \) we have

\[
|\alpha_{kj}| \leq e^{n^2 \log n + C n \log n},
\]

where \(C > 0 \) is an absolute constant.

Proof. We write \(R_{kj}(\lambda) = \sum_{l=0}^{N_j} s_l \lambda^l \), \(N_j = \deg R_{kj} = N - (n - k - j) \), and define

\[
|R_{kj}|(\lambda) = \sum_{l=0}^{N_j} |s_l| \lambda^l = (\lambda + k)^j \prod_{l=0, l \neq k}^{n} (\lambda + l)^{n-l+1}.
\]

Using Cauchy’s estimates (7) and Stirling’s formula \(\log(l!) \leq e(l/e)^l \sqrt{l} \), for \(l \geq 1 \) (see \([R]\)), we get:

\[
|\alpha_{kj}| \leq \sum_{l=0}^{N_j} |s_l|! \leq e \sum_{l=0}^{N_j} |s_l|(l/e)^l \sqrt{l}
\]

\[
\leq e \sqrt{N} \sum_{l=0}^{N_j} |s_l| N^l = e \sqrt{N} |R_{kj}|(N)
\]

\[
\leq e \sqrt{N} \prod_{l=0}^{n} (N + l)^{n-l+1} \leq e \sqrt{N} \exp\left(\log(N + n) \sum_{l=1}^{n+1} l\right).
\]

Since \(\log(N + n) \leq 2 \log n + 2/n \), this yields \(|\alpha_{kj}| \leq \exp(n^2 \log n + C n \log n) \). \(\square \)

Lemma 3.3. If \(0 \leq k \leq n \), then \(|r_{k0}| \geq \exp\left(\left(n^2 \log n\right)/2 - C n^2\right) \), where \(C > 0 \) is an absolute constant.

Proof. We have by (11) and (11) that

\[
|r_{k0}| = |R_k(k)| = n \prod_{l=0, l \neq k}^{n} |k - l|^{n-l+1},
\]

so after a direct calculation we get

\[
\log |r_{k0}| = (n - k + 1) \left(\sum_{l=1}^{k} \log l + \sum_{l=1}^{n-k} \log l \right) + \sum_{l=1}^{k} l \log l - \sum_{l=1}^{n-k} l \log l.
\]

Using Lemma 2.1 with the convention that \(x \log x = 0 \) for \(x = 0 \), it follows that for every \(k = 0, \ldots, n \) we have

\[
\log |r_{k0}| \geq \left(n - k + 1 \right) \left[k \log k + (n - k) \log(n - k) - n \right] + \frac{k^2 \log k}{2} - \frac{k^2}{4} - \frac{(n-k)^2 \log(n-k)}{2}
\]

\[
+ \frac{(n-k)^2}{4} - (n-k) \log(n-k)
\]

\[
\geq k \left(n - k \right) \log k + \frac{(n-k)^2}{2} \log(n-k) - C n^2
\]

\[
= \frac{n^2 \log n}{2} + n^2 F\left(\frac{k}{n} \right) - C n^2 \geq \frac{n^2 \log n}{2} - C n^2,
\]

where \(F(x) = x(1 - x/2) \log x + 0.5(1 - x)^2 \log(1 - x) > -C \) for all \(x \in [0, 1] \) and some constant \(C > 0 \). \(\square \)
Lemma 3.4. For any \(k = 0, \ldots, n \) and \(j = 0, \ldots, n - k \) we have
\[
|r_{kj}|/|r_{k0}| \leq e^2 n^2 (n + 1)^j.
\]

Proof. We fix \(\epsilon \in (0, 1) \), to be chosen later in terms of \(n \). Using the definition \(11 \) of \(r_{kj} \) and applying Cauchy's estimates to \(R_k \), we obtain that \(|r_{kj}| \leq M/\epsilon^j \), where \(M = \max\{|R_k(\lambda)| : |\lambda - k| = \epsilon\} \). If \(\lambda \) is on the circle \(|\lambda - k| = \epsilon \), then
\[
|R_k(\lambda)| \leq \prod_{l=0}^{k-1} (k + \epsilon - l)^{n-l+1} \prod_{l=k+1}^{n} (l - k + \epsilon)^{n-l+1} = |r_{k0}| F_k(\epsilon),
\]
where
\[
F_k(\epsilon) = \prod_{l=0}^{k-1} \left(1 + \frac{\epsilon}{k - l} \right)^{n-l+1} \prod_{l=k+1}^{n} \left(1 + \frac{\epsilon}{l - k} \right)^{n-l+1}.
\]
Therefore \(|r_{kj}|/|r_{k0}| \leq F_k(\epsilon)/\epsilon^j \). Using Lemma 2.1 we get
\[
\log F_k(\epsilon) \leq 2(n + 1) \sum_{l=1}^{n} \log \left(1 + \frac{\epsilon}{l} \right) \leq 2\epsilon(n + 1) \sum_{l=1}^{n} \frac{1}{l} \leq 2\epsilon n (\log n + 1).
\]
Choosing \(\epsilon = 1/(n + 1) \) we obtain \(\log F_k(\epsilon) \leq 2(\log n + 1) \), hence the lemma follows.

We can now estimate the coefficients \(c_{kj}^{'} \) by using the system of equations \(12 \). Lemmas 3.2 and 3.3 imply that
\[
\frac{|\alpha_{kj}|}{|r_{k0}|} \leq e^{t_n}, \quad t_n := \frac{n^2 \log n}{2} + C n^2
\]
holds for every \(k = 0, \ldots, n \) and \(j = 0, \ldots, n - k \), with an absolute constant \(C > 0 \). For fixed \(k \), we prove by induction on \(j = n - k, \ldots, 0 \) that
\[
|c_{kj}^{'}| \leq e^{t_n} \left((n + 1)(1 + e^2 n^2) \right)^{n-k-j}.
\]
If \(j = n - k \) this holds by \(12 \) and \(13 \). Assuming that the inequality is true for \(l = n - k, \ldots, n - k - j + 1 \), we obtain by using Lemmas 3.2, 3.3 and 3.4 that
\[
|c_{kj}^{'}| \leq \frac{|\alpha_{k,n-k-j}|}{|r_{k0}|} + \sum_{l=1}^{j} \frac{|r_{k,l}|}{r_{k0}} |c_{k,n-k-j+l}| \leq e^{t_n} \left[1 + \sum_{l=1}^{j} e^2 n^2 (n + 1)^l (1 + e^2 n^2)^{j-l} \right] \leq e^{t_n} (n + 1)^j \left[1 + e^2 n^2 \sum_{l=1}^{j} (1 + e^2 n^2)^{j-l} \right] = e^{t_n} (n + 1)^j (1 + e^2 n^2)^j,
\]
so \(14 \) is proved. Therefore, combining \(10, 13 \) and \(14 \), we get for every \(j = 0, \ldots, n - k \) that
\[
|c_{kj}| \leq |c_{kj}^{'}| \leq e^{t_n} (n + 1)^n (1 + e^2 n^2)^n \leq \exp \left(\frac{n^2 \log n}{2} + C n^2 \right),
\]
with an absolute constant \(C > 0 \). Using this and (8) it follows that
\[
M_{P_n} (1) \leq \sum_{j=0}^{n-k} |c_{kj}| \leq \exp \left(\frac{n^2 \log n}{2} + Cn^2 \right).
\]

The proof of Proposition [3] and hence the proof of Theorem [1.1] are complete. \(\square \)

Remark. Using the main steps and ideas from this proof, together with more careful estimates of the constants involved, we can prove for every \(n \geq 1 \) the inequalities
\[
\exp \left(\frac{n^2 \log n}{2} - n^2 \right) < E_n < \exp \left(\frac{n^2 \log n}{2} + n^2 + 63 \right).
\]

Proof of Theorem [1.2] Let \(x_n \) be defined as the unique solution of the equation \(n(x_n - 1)e^{x_n} = \log E_n \), for \(n \geq 1 \). Using the polynomial \(P(z, w) = w - 1 - z \) one checks that \(E_1 > 1 \). Therefore \(x_n > 1 \) and by Theorem [1.1] \(\lim_{n \to \infty} x_n = +\infty \).

Let \(\alpha_n = (\log E_n)/x_n \). We estimate first \(x_n \) and \(\alpha_n \). By Theorem [1.1]
\[
(x_n - 1)e^{x_n} = \frac{\log E_n}{n} = \frac{n \log n}{2} + O(n),
\]
hence \(x_n + \log(x_n - 1) = \log n - \log 2 + \log(\log(n + O(1))) \). This implies \(\lim_{n \to \infty} x_n / \log n = 1 \), so \(\lim_{n \to \infty} 2\alpha_n/n^2 = 1 \). Since
\[
x_n = \log n - \log 2 + \log \left(\frac{\log n + O(1)}{x_n - 1} \right)
\]
and since \(x_n / \log n \to 1 \) we get \(x_n = \log n + O(1) \) and
\[
(15) \quad \frac{2\alpha_n}{n^2} - 1 = \frac{2 \log E_n}{n^2x_n} - 1 = \frac{\log n + O(1)}{\log n + O(1)} - 1 = \frac{O(1)}{\log n}.
\]

We can now prove the estimate in the statement. Let \(P \in \mathcal{P}_n \) with \(\|P\|_K = 1 \) and consider the subharmonic function \(u(z) = \log^+ |P_n(z)| \). Then \(u \leq 0 \) on \(\Delta \) and \(u(z) \leq \log E_n + n|z| \), for every \(z \in \mathbb{C} \), by (2). Let \(\bar{u}(x) = \max\{u(z) : |z| = e^x\} \), where \(x \geq 0 \). Then \(\bar{u} \) is a convex increasing function, \(\bar{u}(0) = 0 \) and
\[
\bar{u}(x) \leq \phi(x) = \log E_n + ne^{x^2}, \quad \forall \ x \geq 0.
\]

Note that \(x_n \) verifies \(x_n \phi'(x_n) = \phi(x_n) \), which means that the tangent line to the graph of \(\phi \) at \((x_n, \phi(x_n)) \) passes through the origin. Using the convexity of \(\bar{u} \) it follows that
\[
\bar{u}(x) \leq \left\{ \begin{array}{ll}
\phi'(x_n)x, & \text{if } 0 \leq x \leq x_n, \\
\phi(x), & \text{if } x \geq x_n.
\end{array} \right.
\]

Since \(x \leq e^x - 1 \) and \(ne^{x_n} = (\log E_n)/(x_n - 1) \) we obtain
\[
\phi'(x_n)x = (\log E_n + ne^{x_n})\frac{x}{x_n} \leq \alpha_n x + \frac{ne^{x_n}}{x_n} (e^x - 1) = \alpha_n \left(x + \frac{e^x - 1}{x_n - 1} \right),
\]
for all \(x \geq 0 \). Moreover, it is easy to see that
\[
\phi(x) = \log E_n + ne^{x} \leq \alpha_n x + \frac{ne^{x_n}}{x_n} (e^x - 1)
\]
holds for \(x \geq x_n \). We conclude that for all \(x \geq 0 \) we have
\[
\bar{u}(x) \leq \alpha_n \left(x + \frac{e^x - 1}{x_n - 1} \right) = \frac{n^2}{2} \left[x + \left(\frac{2\alpha_n}{n^2} - 1 \right) x + \frac{2\alpha_n}{n^2} \frac{e^x - 1}{x_n - 1} \right].
\]
Using (15) and the asymptotics of \(x_n\) we obtain
\[
\tilde{u}(x) \leq \frac{n^2}{2} \left(x + \frac{Cx}{\log n} + C'e^{-1} \frac{1}{x_n} \right) \leq \frac{n^2}{2} \left(x + C_2 e^{-1} \frac{1}{1 + \log n} \right),
\]
where \(C_2 > 0\) is an absolute constant. If \(x = \log |z|, |z| \geq 1\), this gives the desired inequality.

Combining the inequality we have just proved with (4), we get for all \(n \geq 1\) and \(r \geq 1\) that
\[
\frac{\log r}{2} + 3 \frac{\log r}{2n} \leq m_n(r) \leq \frac{\log r}{2} + \frac{C_2(r - 1)}{2(1 + \log n)}.
\]
Therefore \(\lim_{n \to \infty} m_n(r)/n^2 = \frac{1}{2} \log r\), locally uniformly for \(r \geq 1\).

References

Department of Mathematics, Syracuse University, Syracuse, New York 13244-1150

E-mail address: dcoman@syr.edu

Department of Mathematics, Syracuse University, Syracuse, New York 13244-1150

E-mail address: eapolets@syr.edu