Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Operator kernel estimates for functions of generalized Schrödinger operators
HTML articles powered by AMS MathViewer

by François Germinet and Abel Klein PDF
Proc. Amer. Math. Soc. 131 (2003), 911-920 Request permission

Abstract:

We study the decay at large distances of operator kernels of functions of generalized Schrödinger operators, a class of semibounded second order partial differential operators of mathematical physics, which includes the Schrödinger operator, the magnetic Schrödinger operator, and the classical wave operators (i.e., acoustic operator, Maxwell operator, and other second order partial differential operators associated with classical wave equations). We derive an improved Combes-Thomas estimate, obtaining an explicit lower bound on the rate of exponential decay of the operator kernel of the resolvent. We prove that for slowly decreasing smooth functions the operator kernels decay faster than any polynomial.
References
  • J. M. Barbaroux, J. M. Combes, and P. D. Hislop, Localization near band edges for random Schrödinger operators, Helv. Phys. Acta 70 (1997), no. 1-2, 16–43. Papers honouring the 60th birthday of Klaus Hepp and of Walter Hunziker, Part II (Zürich, 1995). MR 1441595
  • J.-M. Combes and P. D. Hislop, Localization for some continuous, random Hamiltonians in $d$-dimensions, J. Funct. Anal. 124 (1994), no. 1, 149–180. MR 1284608, DOI 10.1006/jfan.1994.1103
  • J. M. Combes and L. Thomas, Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators, Comm. Math. Phys. 34 (1973), 251–270. MR 391792
  • E. B. Davies, Kernel estimates for functions of second order elliptic operators, Quart. J. Math. Oxford Ser. (2) 39 (1988), no. 153, 37–46. MR 929793, DOI 10.1093/qmath/39.1.37
  • E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1989. MR 990239, DOI 10.1017/CBO9780511566158
  • E. B. Davies, Spectral theory and differential operators, Cambridge Studies in Advanced Mathematics, vol. 42, Cambridge University Press, Cambridge, 1995. MR 1349825, DOI 10.1017/CBO9780511623721
  • Alexander Figotin and Abel Klein, Localization of classical waves. I. Acoustic waves, Comm. Math. Phys. 180 (1996), no. 2, 439–482. MR 1405959
  • Alexander Figotin and Abel Klein, Localization of classical waves. I. Acoustic waves, Comm. Math. Phys. 180 (1996), no. 2, 439–482. MR 1405959
  • Germinet, F., Klein, A.: Bootstrap Multiscale Analysis and Localization in random media. Commun. Math. Phys. 222, 415-448 (2001)
  • Germinet, F., Klein, A.: A characterization of the Anderson metal-insulator transport transition. Preprint.
  • B. Helffer and J. Sjöstrand, Équation de Schrödinger avec champ magnétique et équation de Harper, Schrödinger operators (Sønderborg, 1988) Lecture Notes in Phys., vol. 345, Springer, Berlin, 1989, pp. 118–197 (French). MR 1037319, DOI 10.1007/3-540-51783-9_{1}9
  • Tosio Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. MR 0407617
  • Klein, A., Koines, A.: A general framework for localization of classical waves: I. Inhomogeneous media and defect eigenmodes. Math. Phys. Anal. Geom. 4, 97-130 (2001)
  • Klein, A., Koines, A.: A general framework for localization of classical waves: II. Random media. In preparation.
  • Klein, A., Koines, A., Seifert, M.: Generalized eigenfunctions for waves in inhomogeneous media. J. Funct. Anal. 190, 255–291 (2002)
  • Barry Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 3, 447–526. MR 670130, DOI 10.1090/S0273-0979-1982-15041-8
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 81Q10, 47F05, 35P05
  • Retrieve articles in all journals with MSC (1991): 81Q10, 47F05, 35P05
Additional Information
  • François Germinet
  • Affiliation: UMR 8524 CNRS, UFR de Mathématiques, Université de Lille 1, F-59655 Villeneuve d’Ascq Cédex, France
  • Email: germinet@agat.univ-lille1.fr
  • Abel Klein
  • Affiliation: Department of Mathematics, University of California, Irvine, California 92697-3875
  • MR Author ID: 191739
  • Email: aklein@uci.edu
  • Received by editor(s): July 18, 2001
  • Received by editor(s) in revised form: October 22, 2001
  • Published electronically: July 17, 2002
  • Additional Notes: The second author was supported in part by NSF Grants DMS-9800883 and DMS-9800860
  • Communicated by: Joseph A. Ball
  • © Copyright 2002 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 131 (2003), 911-920
  • MSC (1991): Primary 81Q10, 47F05; Secondary 35P05
  • DOI: https://doi.org/10.1090/S0002-9939-02-06578-4
  • MathSciNet review: 1937430