The range of linear fractional maps on the unit ball
Author:
Alexander E. Richman
Journal:
Proc. Amer. Math. Soc. 131 (2003), 889895
MSC (2000):
Primary 32A10, 32A40, 47B50
Published electronically:
July 17, 2002
MathSciNet review:
1937427
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In 1996, C. Cowen and B. MacCluer studied a class of maps on that they called linear fractional maps. Using the tools of Krein spaces, it can be shown that a linear fractional map is a selfmap of the ball if and only if an associated matrix is a multiple of a Krein contraction. In this paper, we extend this result by specifying this multiple in terms of eigenvalues and eigenvectors of this matrix, creating an easily verified condition in almost all cases. In the remaining cases, the best possible results depending on fixed point and boundary behavior are given.
 1.
Daniel
Alpay, Aad
Dijksma, James
Rovnyak, and Hendrik
de Snoo, Schur functions, operator colligations, and reproducing
kernel Pontryagin spaces, Operator Theory: Advances and Applications,
vol. 96, Birkhäuser Verlag, Basel, 1997. MR 1465432
(2000a:47024)
 2.
C. Bisi and F. Bracci, Linear fractional maps of the unit ball: A geometric study, preprint, 2000.
 3.
János
Bognár, Indefinite inner product spaces,
SpringerVerlag, New YorkHeidelberg, 1974. Ergebnisse der Mathematik und
ihrer Grenzgebiete, Band 78. MR 0467261
(57 #7125)
 4.
Filippo
Bracci, On the geometry at the boundary of holomorphic selfmaps of
the unit ball of 𝐶ⁿ, Complex Variables Theory Appl.
38 (1999), no. 3, 221–241. MR 1694318
(2000b:32038)
 5.
Carl
C. Cowen and Barbara
D. MacCluer, Composition operators on spaces of analytic
functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL,
1995. MR
1397026 (97i:47056)
 6.
, Schroeder's equation in several variables, preprint, August 1999.
 7.
Carl
C. Cowen and Barbara
D. MacCluer, Linear fractional maps of the ball and their
composition operators, Acta Sci. Math. (Szeged) 66
(2000), no. 12, 351–376. MR 1768872
(2001g:47041)
 8.
D. Crosby, A breakdown of linear fractional maps of the ball, unpublished notes from research as an undergraduate, 1996.
 9.
Michael
A. Dritschel and James
Rovnyak, Extension theorems for contraction operators on
Kreĭn spaces, Extension and interpolation of linear operators
and matrix functions, Oper. Theory Adv. Appl., vol. 47,
Birkhäuser, Basel, 1990, pp. 221–305. MR 1120277
(92m:47068)
 10.
J.
William Helton, Joseph
A. Ball, Charles
R. Johnson, and John
N. Palmer, Operator theory, analytic functions, matrices, and
electrical engineering, CBMS Regional Conference Series in
Mathematics, vol. 68, Published for the Conference Board of the
Mathematical Sciences, Washington, DC; by the American Mathematical
Society, Providence, RI, 1987. MR 896034
(89f:47001)
 11.
M. G. Kren and Ju. L. Smul'jan, Plusoperators in a space with indefinite metric, Amer. Math. Soc. Transl. (2) 85 (1969), 93113.
 12.
V. P. Potapov, Linear fractional transformations of matrices, Amer. Math. Soc. Transl. (2) 138 (1988), 2135.
 13.
Binyamin
Schwarz and Abraham
Zaks, NonEuclidean motions in projective matrix spaces,
Linear Algebra Appl. 137/138 (1990), 351–361. MR 1067682
(92a:51025), http://dx.doi.org/10.1016/00243795(90)90134X
 14.
Joel
H. Shapiro, Composition operators and classical function
theory, Universitext: Tracts in Mathematics, SpringerVerlag, New
York, 1993. MR
1237406 (94k:47049)
 15.
Ju.
L. Šmul′jan, General linearfractional transformations
of operator spheres, Sibirsk. Mat. Ž. 19
(1978), no. 2, 418–425, 480 (Russian). MR 0493458
(58 #12463)
 1.
 D. Alpay, A. Dijksma, J. Rovnyak, and H. de Snoo, Schur functions, operator colligations, and reproducing kernel Pontryagin spaces, Birkhäuser Verlag, Basel, 1997. MR 2000a:47024
 2.
 C. Bisi and F. Bracci, Linear fractional maps of the unit ball: A geometric study, preprint, 2000.
 3.
 J. Bognár, Indefinite inner product spaces, SpringerVerlag, New York, 1974, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 78. MR 57:7125
 4.
 F. Bracci, On the geometry at the boundary of holomorphic selfmaps of the unit ball of , Complex Variables Theory Appl. 38 (1999), no. 3, 221241. MR 2000b:32038
 5.
 C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995. MR 97i:47056
 6.
 , Schroeder's equation in several variables, preprint, August 1999.
 7.
 , Linear fractional maps of the ball and their composition operators, Acta Sci. Math. (Szeged) 66 (2000), no. 12, 351376. MR 2001g:47041
 8.
 D. Crosby, A breakdown of linear fractional maps of the ball, unpublished notes from research as an undergraduate, 1996.
 9.
 M. A. Dritschel and J. Rovnyak, Extension theorems for contraction operators on Kren spaces, Extension and interpolation of linear operators and matrix functions, Birkhäuser, Basel, 1990, pp. 221305. MR 92m:47068
 10.
 J. W. Helton, J. A. Ball, C. R. Johnson, and J. N. Palmer, Operator theory, analytic functions, matrices, and electrical engineering, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1987. MR 89f:47001
 11.
 M. G. Kren and Ju. L. Smul'jan, Plusoperators in a space with indefinite metric, Amer. Math. Soc. Transl. (2) 85 (1969), 93113.
 12.
 V. P. Potapov, Linear fractional transformations of matrices, Amer. Math. Soc. Transl. (2) 138 (1988), 2135.
 13.
 B. Schwarz and A. Zaks, NonEuclidean motions in projective matrix spaces, Linear Algebra Appl. 137/138 (1990), 351361. MR 92a:51025
 14.
 J. H. Shapiro, Composition Operators and Classical Function Theory, SpringerVerlag, New York, 1993. MR 94k:47049
 15.
 Ju. L. Smul'jan, General linearfraction maps of operator balls, Siberian Math. J. 19 (1978), no. 2, 293298. MR 58:12463
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
32A10,
32A40,
47B50
Retrieve articles in all journals
with MSC (2000):
32A10,
32A40,
47B50
Additional Information
Alexander E. Richman
Affiliation:
Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
Address at time of publication:
as of August 11, 2002: Department of Mathematics, Bucknell University, Lewisburg, Pennsylvania 17837
Email:
richman@math.purdue.edu, arichman@bucknell.edu
DOI:
http://dx.doi.org/10.1090/S0002993902065966
PII:
S 00029939(02)065966
Keywords:
Linear fractional maps,
unit ball,
Kre\u{\i}n space
Received by editor(s):
September 12, 2001
Received by editor(s) in revised form:
October 19, 2001
Published electronically:
July 17, 2002
Communicated by:
Joseph A. Ball
Article copyright:
© Copyright 2002
American Mathematical Society
