Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

On ultrametrization of general metric spaces


Author: Alex J. Lemin
Journal: Proc. Amer. Math. Soc. 131 (2003), 979-989
MSC (2000): Primary 54E35, 54E05, 54E40, 54E50; Secondary 06B30, 06E15, 11E95, 12J25, 18A40, 18B30, 26E30, 54B30, 54C10, 54D30
Published electronically: October 18, 2002
MathSciNet review: 1937437
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper gives a complete description of ultrametric spaces up to uniform equivalence. It also describes all metric spaces which can be mapped onto ultrametric spaces by a non-expanding one-to-one map. Moreover, it describes particular classes of spaces, for which such a map has a continuous (uniformly continuous) inverse map. This gives a complete solution for the Hausdorff-Bayod Problem (what metric spaces admit a subdominant ultrametric?) as well as for two other problems posed by Bayod and Martínez-Maurica in 1990. Further, we prove that for any metric space $(X,d)$, there exists the greatest non-expanding ultrametric image of $X$ (an ultrametrization of $X$), i.e., the category of ultrametric spaces and non-expanding maps is a reflective subcategory in the category of all metric spaces and the same maps. In Section II, for any cardinal $\tau$, we define a complete ultrametric space $L_\tau$ of weight $\tau$ such that any metric space $X$ of weight $\tau$ is an image of a subset $L(X)$ of $L_\tau$ under a non-expanding, open, and compact map with totally-bounded pre-images of compact subsets. This strengthens Hausdorff-Morita, Morita-de Groot and Nagami theorems. We also construct an ultrametric space $L(\tau)$, which is a universal pre-image of all metric spaces of weight $\tau$ under non-expanding open maps. We define a functor $\lambda$ from the category of ultrametric spaces to a category of Boolean algebras such that algebras $\lambda(X)$ and $\lambda(Y)$ are isomorphic iff the completions of spaces $X$ and $Y$ are uniformly homeomorphic. Some properties of the functor $\lambda$ and the ultrametrization functor are discussed.


References [Enhancements On Off] (What's this?)

  • 1. José M. Bayod and J. Martínez-Maurica, Subdominant ultrametrics, Proc. Amer. Math. Soc. 109 (1990), no. 3, 829–834. MR 1015676 (90k:54038), http://dx.doi.org/10.1090/S0002-9939-1990-1015676-1
  • 2. José M. Bayod, The space 𝑙¹(𝐾) is not ultrametrizable, 𝑝-adic functional analysis (Laredo, 1990) Lecture Notes in Pure and Appl. Math., vol. 137, Dekker, New York, 1992, pp. 221–225. MR 1152581 (93a:46140)
  • 3. E. Cech, On bicompact spaces, Ann. of Math. 38 (1937), 823-844.
  • 4. V. A. Efremovich, Proximity geometry, Math. Sbornik 31 (1952), 189-200.
  • 5. Ryszard Engelking, General topology, PWN—Polish Scientific Publishers, Warsaw, 1977. Translated from the Polish by the author; Monografie Matematyczne, Tom 60. [Mathematical Monographs, Vol. 60]. MR 0500780 (58 #18316b)
  • 6. J. de Groot, Non-Archimedean metrics in topology, Proc. AMS 7:6 (1956) 948-956.
  • 7. F. Hausdorff, Erweiterung einer Homeomorphie, Fund. Math. 16 (1930), 353-360.
  • 8. -, Über innere Abbildungen, Fund. Math. 23 (1934), 279-291.
  • 9. -, Set Theory, Leipzig, 1914 (Russian edition revised and completed by Paul Alexandroff and Andrei Kolmogoroff, Moscow, 1937).
  • 10. A. J. Lemin, Proximity on isosceles spaces, Russian Math. Surveys 39:1 (1984), 143-144.
  • 11. -, On stability of the property of a space being isosceles, Russian Math. Surveys 39:5 (1984), 283-284.
  • 12. -, Transition functor to a function space in the uniform topology, Russian Math. Surveys 40:6 (1985), 133-134.
  • 13. -, Inverse images of metric spaces under non-expanding open mappings, Russian Math. Surveys 43:3 (1988), 214-215.
  • 14. Alex J. Lemin, The Smirnov compactification functor is one-to-one over the class of complete first countable spaces, Topology Appl. 38 (1991), no. 2, 201–204. MR 1094551 (92b:54057), http://dx.doi.org/10.1016/0166-8641(91)90085-Z
  • 15. -, The category of ultrametric spaces is isomorphic to the category of complete, atomic, tree-like, and real graduated lattices $\mathbf{LAT}^*$, Algebra Universalis (to appear).
  • 16. Alex J. Lemin, Isometric embedding of ultrametric (non-Archimedean) spaces in Hilbert space and Lebesgue space, 𝑝-adic functional analysis (Ioannina, 2000) Lecture Notes in Pure and Appl. Math., vol. 222, Dekker, New York, 2001, pp. 203–218. MR 1838292 (2002d:46058)
  • 17. -, Ultrametric spaces and Boolean algebras, ``$5^{{th}}$ international conference ``Topology and its Applications'', Dubrovnik June 1990, Abstracts'', Zagreb 1990, p. 49.
  • 18. Alex J. Lemin and Vladimir A. Lemin, On a universal ultrametric space, Topology Appl. 103 (2000), no. 3, 339–345. MR 1758444 (2001b:54035), http://dx.doi.org/10.1016/S0166-8641(99)00029-2
  • 19. V. Lemin, Finite ultrametric spaces and computer science, in: ``Categorical Perspectives'', ed. Jürgen Koslowski, Austin Melton (Trends in Mathematics, v. 16), Birkhäuser-Verlag, Boston, Basel, Berlin, 2001, pp. 219-242.
  • 20. K. Morita, Normal families and dimension theory for metric spaces, Math. Ann. 128 (1954), 350-362.
  • 21. Keiô Nagami, A note on Hausdorff spaces with the star-finite property. I, II, Proc. Japan Acad. 37 (1961), 131–134, 189–192. MR 0144306 (26 #1852)
  • 22. V. Ponomarev, Axioms of countability and continuous mappings, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 127–134 (Russian, with English summary). MR 0116314 (22 #7109)
  • 23. R. Rammal, G. Toulouse, and M. A. Virasoro, Ultrametricity for physicists, Rev. Modern Phys. 58 (1986), no. 3, 765–788. MR 854445 (87k:82105), http://dx.doi.org/10.1103/RevModPhys.58.765
  • 24. Yu. M. Smirnov, On proximity spaces, Math. Sbornik 31 (1952), 543-574 (in Russian), AMS Trans. Ser. 2, 38, 5-35.
  • 25. -, On completeness of proximity spaces, Proceedings of Moscow Math. Soc. 3 (1954), 271-306.
  • 26. Yu. M. Smirnov, On the dimension of proximity spaces, Mat. Sb. N.S. 38(80) (1956), 283–302 (Russian). MR 0082095 (18,497b)
  • 27. M. Stone, Applications of the theory of Boolean rings to general topology, Trans. AMS 41 (1937), 375-481.
  • 28. J. E. Vaughan, Universal ultrametric spaces of smallest weight, Topology Proceedings 24 (2001), 611-619.
  • 29. Stephen Watson, The classification of metrics and multivariate statistical analysis, Topology Appl. 99 (1999), no. 2-3, 237–261. 8th Prague Topological Symposium on General Topology and its Relations to Modern Analysis and Algebra, Part II (1996). MR 1728852 (2000i:54038), http://dx.doi.org/10.1016/S0166-8641(99)00157-1

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 54E35, 54E05, 54E40, 54E50, 06B30, 06E15, 11E95, 12J25, 18A40, 18B30, 26E30, 54B30, 54C10, 54D30

Retrieve articles in all journals with MSC (2000): 54E35, 54E05, 54E40, 54E50, 06B30, 06E15, 11E95, 12J25, 18A40, 18B30, 26E30, 54B30, 54C10, 54D30


Additional Information

Alex J. Lemin
Affiliation: Department of Mathematics, Moscow State University of Civil Engineering, 26 Yaro- slavskoe Highway, Moscow 129337, Russia
Email: alex_lemin@hotmail.com

DOI: http://dx.doi.org/10.1090/S0002-9939-02-06605-4
PII: S 0002-9939(02)06605-4
Keywords: Metric space, ultrametric space, proximity space, complete space, compactification, Smirnov compactification, uniform equivalence, non-expanding map, subdominant ultrametric, ultrametrization of metric space, Boolean algebra, category, functor, reflective functor, ultrametrization functor, isomorphism of categories
Received by editor(s): December 30, 2000
Received by editor(s) in revised form: October 29, 2001
Published electronically: October 18, 2002
Communicated by: Alan Dow
Article copyright: © Copyright 2002 American Mathematical Society