Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Oscillation of linear Hamiltonian systems


Authors: Fanwei Meng and Angelo B. Mingarelli
Journal: Proc. Amer. Math. Soc. 131 (2003), 897-904
MSC (2000): Primary 34A30, 34C10
DOI: https://doi.org/10.1090/S0002-9939-02-06614-5
Published electronically: July 25, 2002
MathSciNet review: 1937428
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We establish new oscillation criteria for linear Hamiltonian systems using monotone functionals on a suitable matrix space. In doing so we develop new criteria for oscillation involving general monotone functionals instead of the usual largest eigenvalue. Our results are new even in the particular case of self-adjoint second order differential systems.


References [Enhancements On Off] (What's this?)

  • 1. G. J. Butler and L. H. Erbe, Oscillation results for second order differential systems, SIAM J. Math. Anal., 17 (1986), 19-29. MR 87h:34045
  • 2. G. J. Butler and L. H. Erbe, Oscillation results for selfadjoint differential systems, J. Math. Anal. Appl., 115 (1986), 470-481. MR 87f:34032
  • 3. G. J. Butler, L. H. Erbe and A. B. Mingarelli, Riccati techniques and variational principles in oscillation theory for linear systems, Trans. Amer. Math. Soc, 303 (1987), 263-282. MR 88h:34023
  • 4. R. Byers, B.J. Harris and M.K. Kwong, Weighted means and oscillation conditions for second order matrix differential equations, J. Differential Equations, 61 (1986), 164-177. MR 87f:34033
  • 5. W.A. Coppel, Disconjugacy, Lecture Notes in Mathematics, Vol. 220, Springer-Verlag (Berlin, Heidelberg, New York) 1971. MR 57:778
  • 6. L.H. Erbe, Q. Kong and S. Ruan, Kamenev type theorems for second order matrix differential systems, Proc. Amer. Math. Soc., 117 (1993), 957-962. MR 93e:34045
  • 7. P. Hartman, Self-adjoint, non-oscillatory systems of ordinary second order, linear differential equations, Duke Math. J., 24 (1957), 25-36. MR 18:576d
  • 8. D.B. Hinton and R.T. Lewis, Oscillation theory for generalized second order differential equations, Rocky Mountain J. Math., 10 (1980), 751-766. MR 82c:34039
  • 9. W. Kratz, Quadratic Functionals in Variational Analysis and Control Theory, Akademie Verlag, Berlin, 1995. MR 96f:34002
  • 10. M.K. Kwong and H.G. Kaper, Oscillation of two-dimentional linear second order differential systems, J. Differential Equations, 56 (1985), 195-205. MR 86j:34032
  • 11. F. Meng, J. Wang and Z. Zheng, A note on Kamenev type theorems for second order matrix differential systems Proc. Amer. Math. Soc., 126 (1998), 391-395. MR 98d:34063
  • 12. A.B. Mingarelli, On a conjecture for oscillation of second order ordinary differential systems, Proc. Amer. Math. Soc., 82 (1981), 593-598. MR 82j:34028
  • 13. A. Peterson and J. Ridenhour, Oscillation of second order linear matrix difference equations, J. Differential Equations, 89 (1991), 69-88. MR 92e:39010
  • 14. W.T. Reid, Sturmian Theory, Springer-Verlag, New York, Heidelberg, Berlin, 1980. MR 82f:34002

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 34A30, 34C10

Retrieve articles in all journals with MSC (2000): 34A30, 34C10


Additional Information

Fanwei Meng
Affiliation: Department of Mathematics, Qufu Normal University, Qufu, Shandong, 273165, People’s Republic of China
Email: fwmeng@qfnu.edu.cn

Angelo B. Mingarelli
Affiliation: School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada K1S 5B6

DOI: https://doi.org/10.1090/S0002-9939-02-06614-5
Keywords: Oscillation, Hamiltonian systems, monotone functionals
Received by editor(s): October 19, 2001
Published electronically: July 25, 2002
Additional Notes: This research was supported by the NSF of China (10071043) and Shandong Province (FWM) and NSERC Canada (ABM)
Communicated by: Carmen C. Chicone
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society