Infinitely many nonradial solutions to a superlinear Dirichlet problem

Authors:
Hugo Aduén and Alfonso Castro

Journal:
Proc. Amer. Math. Soc. **131** (2003), 835-843

MSC (2000):
Primary 35J20; Secondary 34B15

DOI:
https://doi.org/10.1090/S0002-9939-02-06642-X

Published electronically:
September 17, 2002

MathSciNet review:
1937421

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this article we provide sufficient conditions for a superlinear Dirichlet problem to have infinitely many nonradial solutions. Our hypotheses do not require the nonlinearity to be an odd function. For the sake of simplicity in the calculations we carry out details of proofs in a ball. However, the proofs go through for any annulus.

**1.**A. Bahri and P.-L. Lions,*Morse index of some min-max critical points. I. Application to multiplicity results*, Comm. Pure Appl. Math.**41**(1988), 1027-1037. MR**90b:58035****2.**H. Berestycki and P.-L. Lions,*Nonlinear scalar field equations. II. Existence of infinitely many solutions*, Arch. Rat. Mech. Anal.**82**(1983), 347-375. MR**84h:35054b****3.**T. Bartsch and M. Willem,*Infinitely many nonradial solutions of a Euclidean scalar field equation*, J. Funct. Anal.**117**(1993), 447-460. MR**94k:35093****4.**A. Castro, J. Cossio, and J. M. Neuberger,*On multiple solutions of a nonlinear Dirichlet problem*, Nonlinear Analysis TMA**30**(1997), 3657-3662. MR**98h:35070****5.**A. Castro and M. Finan,*Existence of many sign-changing solutions to a superlinear Dirichlet problem on thin annuli*, Topological Methods in Nonlinear Analysis.**13**(1999), 273-280. MR**2000j:35092****6.**A. Castro and M. Finan,*Existence of many positive nonradial solutions for a superlinear Dirichlet problem on thin annuli*, Nonlinear Differential Equations, Electron. J. Diff. Eqns., Conf.**05**(2000), 21-31. MR**2001i:35116****7.**A. Castro and A. Kurepa,*Infinitely many radially symmetric solutions to a superlinear dirichlet problem in a ball*, Proc. Amer. Math. Soc.**101**(1987), 57-64. MR**88j:35058****8.**M. Cwikel,*Weak type estimates for singular values and the number of bound states of Schrödinger operators*, Ann. Math.**106**(1977), 93-100. MR**57:13242****9.**D. Fortunato and E. Jannelli,*Infinitely many solutions for some nonlinear elliptic problems in symmetrical domains*, Proc. Roy. Soc. Edinburgh Sect. A**105**(1987), 205-213. MR**88m:35057****10.**W.-Y. Ding,*On a conformally invariant equation on*, Comm. Math. Phys.**107**(1986), 331-335. MR**87m:35066****11.**M. Struwe,*Superlinear elliptic boundary value problems with rotational symmetry*, Arch. Math.**39**(1982), 233-240. MR**84a:35097****12.**E. Yanagida,*Structure of radial solutions to**in*, SIAM J. Math. Anal.**27**(1996), 997-1014. MR**98c:35047**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
35J20,
34B15

Retrieve articles in all journals with MSC (2000): 35J20, 34B15

Additional Information

**Hugo Aduén**

Affiliation:
Departamento de Matemáticas, Universidad de Córdoba, Montería, Colombia

Email:
haduen@hotmail.com

**Alfonso Castro**

Affiliation:
Division of Mathematics and Statistics, The University of Texas at San Antonio, San Antonio, Texas 78249

Email:
acastro@utsa.edu

DOI:
https://doi.org/10.1090/S0002-9939-02-06642-X

Keywords:
Critical point,
Morse index,
nonradial solutions,
Cwikel inequality,
nonlinear elliptic equation

Received by editor(s):
March 8, 2001

Received by editor(s) in revised form:
October 15, 2001

Published electronically:
September 17, 2002

Communicated by:
David S. Tartakoff

Article copyright:
© Copyright 2002
American Mathematical Society