Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the local spectral radius of positive operators


Author: Miroslawa Zima
Journal: Proc. Amer. Math. Soc. 131 (2003), 845-850
MSC (2000): Primary 47A11, 47B65
DOI: https://doi.org/10.1090/S0002-9939-02-06726-6
Published electronically: July 2, 2002
MathSciNet review: 1937422
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give some sufficient conditions for subadditivity and submultiplicativity of the local spectral radius of bounded positive linear operators.


References [Enhancements On Off] (What's this?)

  • 1. J.Danes, On local spectral radius, Cas. pest. mat. 112 (1987), 177-187. MR 88j:47004
  • 2. A.R.Esayan, On the estimation of the spectral radius of the sum of positive semicommutative operators (in Russian), Sibirsk. Math. Zh. 7 (1966), 460-464.
  • 3. K.H.Förster and B.Nagy, On the local spectral theory of positive operators, Operator Theory: Advances and Applications, vol. 28, Birkhäuser, Basel, 1988, pp. 71-81. MR 89g:47049
  • 4. K.H.Förster and B.Nagy, On the local spectral radius of a nonnegative element with respect to an irreducible operator, Acta Sci. Math. 55 (1991), 155-166. MR 92j:47016
  • 5. M.A.Krasnoselskii et al., Approximate solutions of operator equations, Noordhoff, Groningen, 1972. MR 52:6515
  • 6. K.B.Laursen and M.M.Neumann, Introduction to local spectral theory, Lond. Math. Soc. Monographs, Oxford Univ. Press, 2000. MR 2001k:47002
  • 7. V.Müller, Local spectral radius formula for operators in Banach spaces, Czechoslovak Math. J. 38 (1988), 726-729. MR 89g:47005
  • 8. F.Riesz and B.Sz.-Nagy, Functional analysis, Ungar, New York, 1955. MR 17:175i
  • 9. M.Zima, A theorem on the spectral radius of the sum of two operators and its applications, Bull. Austral. Math. Soc. 48 (1993), 427-434. MR 94j:47006
  • 10. M.Zima, On the local spectral radius in partially ordered Banach spaces, Czechoslovak Math. J. 49 (1999), 835-841. MR 2001m:47011

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47A11, 47B65

Retrieve articles in all journals with MSC (2000): 47A11, 47B65


Additional Information

Miroslawa Zima
Affiliation: Institute of Mathematics, University of Rzeszów, Rejtana 16 A, 35-310 Rzeszów, Poland
Email: mzima@univ.rzeszow.pl

DOI: https://doi.org/10.1090/S0002-9939-02-06726-6
Received by editor(s): July 6, 2001
Received by editor(s) in revised form: October 15, 2001
Published electronically: July 2, 2002
Communicated by: David R. Larson
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society