Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Une propriété de continuité du temps local


Author: Lucien Chevalier
Journal: Proc. Amer. Math. Soc. 131 (2003), 933-936
MSC (2000): Primary 60G44
DOI: https://doi.org/10.1090/S0002-9939-02-06731-X
Published electronically: October 15, 2002
MathSciNet review: 1937439
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $L^0(M)$ denote the local time (at 0) associated with a martingale $M$. The aim of this note is to prove that the mapping $M \mapsto L^0(M)$ is continuous from $L^1$ into weak-$L^1$.


References [Enhancements On Off] (What's this?)

  • 1. J. Azéma et M. Yor. En guise d'introduction. Astérisque 52-53 (Temps locaux), Société mathématique de France (1978), 3-16.
  • 2. M. T. Barlow and M. Yor. Semi-martingale inequalities and local times. Z. Wahrscheinlichkeitstheorie verw. Gebiete. 55 (1981), 237-254. MR 82h:60092
  • 3. D. L. Burkholder. Martingale transforms. Ann. Math. Stat. 37 (1966), 1494-1504. MR 34:8456
  • 4. P. A. Meyer. Un cours sur les intégrales stochastiques. Séminaire de Probabilités X, Lecture Notes in Mathematics 511, Springer Verlag, Berlin, Heidelberg, New-York (1976), 246-354. MR 58:18721

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 60G44

Retrieve articles in all journals with MSC (2000): 60G44


Additional Information

Lucien Chevalier
Affiliation: Institut Fourier, U.M.R. 5582 C.N.R.S., Université Joseph Fourier, B.P. 74, 38402 Saint Martin d’Hères, France
Email: lucchev@fourier.ujf-grenoble.fr

DOI: https://doi.org/10.1090/S0002-9939-02-06731-X
Keywords: Martingales, continuity, local time
Received by editor(s): August 18, 2001
Published electronically: October 15, 2002
Communicated by: Claudia M. Neuhauser
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society